Exercise Sheet 1

1. Divergence Theorem

Let $M \subset \mathbb{R}^{3}$ be a compact 3-dimensional manifold with boundary, $N: \partial M \rightarrow$ S^{2} the outward pointing unit normal,

$$
\pi=f d y \wedge d z+g d z \wedge d x+h d x \wedge d y
$$

a 2-form on \mathbb{R}^{3} and $X=(f, g, h)$.
(a) Show that $d \pi=\operatorname{div}(X) d x \wedge d y \wedge d z$.
(b) Deduce the Divergence Theorem

$$
\int_{M} \operatorname{div}(X) \mathrm{dVol}=\int_{\partial M}\langle X, N\rangle \mathrm{d} A
$$

from the Theorem of Stokes for differential forms.

2. Orthogonal Structures

Let $\pi: E \rightarrow M$ be a vector bundle of rank k over a manifold M. An orthogonal structure g on E assigns to every point $p \in M$ a scalar product g_{p} on the fiber $E_{p}:=\pi^{-1}(p)$, such that for all sections s, s^{\prime} the map $p \mapsto g_{p}\left(s(p), s^{\prime}(p)\right)$ is smooth.

Prove that every vector bundle admits an orthogonal structure.
Hint: Use a partition of unity.

3. Vector Bundles of Rank 1

a) Prove that every vector bundle of rank 1 over a simply connected manifold is trivial.
b) Prove that, up to isomorphism, there exist exactly two vector bundles of rank 1 over S^{1}.

