Prof. Dr. Joaquim Serra

Exercise Sheet 10

1. Two dimensional Hadamard manifolds

Let (M, g) be a two dimensional Hadamard manifold. For fixed point $p \in M$ and isometry $H: \mathbb{R}^{2} \rightarrow T M_{p}$, consider $\left(\mathbb{R}^{2}, \bar{g}\right)$ where $\bar{g}:=\left(\exp _{p} \circ H\right)^{*} g$.
(a) Show that \bar{g} is of the form

$$
\begin{equation*}
\bar{g}_{x}(v, w):=\left(v \cdot \frac{x}{|x|}\right)\left(w \cdot \frac{x}{|x|}\right)+\frac{f^{2}(x)}{|x|^{2}}\left(v \cdot w-\left(v \cdot \frac{x}{|x|}\right)\left(w \cdot \frac{x}{|x|}\right)\right) \tag{1}
\end{equation*}
$$

where $f^{2}(x) /|x|^{2}$ is smooth (also at $x=0$) and has limit 1 as $x \rightarrow 0$, and where $t \mapsto f(t x)$ is nonnegative and convex for any fixed $x \in$ $\mathbb{R}^{2} \backslash\{0\}$.
(b) Reciprocally, show that \mathbb{R}^{2} endowed with any metric \bar{g} satisfying the properties established in (a) -and such that $g_{x}(v, w)$ extends to a smooth metric across $x=0$ - gives a model of a Hadamard manifold (simply connected with nonpositive sectional curvature at all points).

2. Some consequences of non-positive sectional curvature

Let M be a Hadamard manifold. Prove the following:
(a) For each $p \in M$, the map $\left(\exp _{p}\right)^{-1}: M \rightarrow T M_{p}$ is 1-Lipschitz.
(b) For $p, x, y \in M$, it holds

$$
d(p, x)^{2}+d(p, y)^{2}-2 d(p, x) d(p, y) \cos \gamma \leq d(x, y)^{2}
$$

where γ denotes the angle in p.
(c) Let m denote the midpoint of the geodesic $x y$ in M and let $p \in M$. Then we have

$$
d(p, m)^{2} \leq \frac{d(p, x)^{2}+d(p, y)^{2}}{2}-\frac{1}{4} d(x, y)^{2}
$$

Hint: Prove it first in the Euclidean plane. (This is a rather difficult but interesting to do exercise if one uses only the results up to Chapter 4 in Prof. Lang's notes. The exercise becomes simpler if one uses the content of Chapter 5.)

3. Isometries with bounded orbits.

Let M be a Hadamard manifold. Prove the following:
(a) If $Y \subset M$ is a bounded set, then there is a unique point $c_{Y} \in M$ such that $Y \subset \bar{B}\left(c_{Y}, r\right)$, where $r:=\inf \{s>0: \exists x \in M$ such that $Y \subset$ $\bar{B}(x, s)\}$.

Hint: Prove it first in Euclidean space. It may be useful to use part (c) of exercise 2 . We call c_{Y} the center of Y.
(b) Let γ be an isometry of M. Then γ is elliptic if and only if M has a bounded orbit. Furthermore, if γ^{n} is elliptic for some integer $n \neq 0$, then γ is elliptic.

