Prof. Dr. Joaquim Serra

## Exercise Sheet 11

## 1. Asymptotic expansion of the circumference

Let $M$ be a manifold, $E \subset T M_{p}$ a linear 2-plane and $\gamma_{r} \subset E$ a circle with center 0 and radius $r>0$ sufficiently small. Show that

$$
L\left(\exp \left(\gamma_{r}\right)\right)=2 \pi\left(r-\frac{\sec (E)}{6} r^{3}+\mathcal{O}\left(r^{4}\right)\right)
$$

for $r \rightarrow 0$.

## 2. Isoperimetric problem in two dimensional Hadamard manifolds

Let $M$ be a 2-dimensional Hadamard manifold. Given $\Omega \subset M$ bounded, we say that $\partial \Omega$ is $C^{2}$ if it consists of a finite disjoint union of $C^{2}$ simple close curves. For such $\Omega$ define the isoperimetric quotient

$$
\mathcal{I}(\Omega):=\frac{\operatorname{length}(\partial \Omega)}{\operatorname{area}(\Omega)^{\frac{1}{2}}}
$$

a) Suppose first that $M$ is isometric to the Euclidean plane. Show that if $\Omega_{0}$ is a minimizer of $\mathcal{I}$ (such that $\partial \Omega_{0}$ is $C^{2}$ ) then

$$
\mathcal{I}\left(\Omega_{0}\right)=\sqrt{4 \pi} \text { and } \Omega_{0} \text { is an Euclidean disc. }
$$

Hint: Show that a smooth minimizer $\partial \Omega_{0}$ must consist of exactly simple curve $\gamma$, and prove (using the first variation of arc length) that the geodesic curvature $\kappa_{g}$ of $\gamma$ must be constant. Deduce that $\gamma$ must trace a circle in $\mathbb{R}^{2}$.
b) In the case of nonnegative Gauss curvature $K \leq 0$, show that if $\Omega_{0}$ is a minimizer of $\mathcal{I}$ (with $\partial \Omega_{0}$ of class $C^{2}$ ) then $\mathcal{I}\left(\Omega_{0}\right)=\sqrt{4 \pi}$, and $\Omega_{0}$ is isometric to an Euclidean ball.

Hint: Using small metric balls $B_{r}(p) \subset M$, with $r \ll 1$ as "competitors", prove that $\mathcal{I}\left(\Omega_{0}\right) \leq \sqrt{4 \pi}$. Show that, as in a), $\partial \Omega_{0}$ must consist of only one closed simple curve $\gamma$. Let $\nu$ be the inwards unit normal to $\partial \Omega_{0}$, define (for $\varepsilon$ small) $\gamma_{\varepsilon}(t):=\gamma(t)+\varepsilon \nu(t)$, and let $\Omega_{\varepsilon}$ be the bounded connected component of $M \backslash$ image $\left(\gamma_{\varepsilon}\right)$. Show that $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} I\left(\Omega_{\varepsilon}\right) \leq 0$, and $<0$ unless $K \equiv 0$ in $\Omega_{0}$.

## 3. Characterization of the cut value

Let $M$ be a complete Riemannian manifold. Given $p \in M$ and $u \in T M_{p}$ we define the cut value of $u$ as the number

$$
t_{u}:=\sup \left\{t>0: d\left(\exp _{p}(t u), p\right)=t\right\}
$$

Let $c_{u}: \mathbb{R} \rightarrow M, c_{u}(t):=\exp _{p}(t u)$, be a unit speed geodesic. If the cut value $t_{u}$ is finite then (at least) one of the following holds for $t=t_{u}$ :
(i) $c_{u}(t)$ is the first conjugate point of $p$ along $\left.c_{u}\right|_{[0, t]}$,
(ii) there exists $v \in T M_{p},|v|=1, v \neq u$ with $c_{u}(t)=c_{v}(t)$.

Conversely, if (i) or (ii) is satisfied for some $t \in(0, \infty)$, then $t_{u} \leq t$.

