Exercise Sheet 2

1. Basic properties of the Lie bracket

Let M be a smooth manifold, X , Y and Z belong to $\Gamma(TM)$, and f, g belong to $C^{\infty}(M)$

- a) Show that the Lie bracket $[\cdot, \cdot]$ is bilinear and satisfies:
 - [Y, X] = -[X, Y]
 - [fX,gY] = fg[X,Y] + fX(g)Y gY(f)X
 - [X, [Y, Z]] + [Y, [Z, X] + [Z, [X, Y]] = 0
- b) Show that in a chart (φ, U) , if $X = \sum X^i \frac{\partial}{\partial \varphi^i}$ and $Y = \sum Y^j \frac{\partial}{\partial \varphi^j}$, we have

$$[X,Y]|_{U} = \sum_{i} \left(\sum_{j} X^{j} \frac{\partial Y^{i}}{\partial \varphi^{j}} - Y^{j} \frac{\partial X^{i}}{\partial \varphi^{j}}\right) \frac{\partial}{\partial \varphi^{i}}$$

2. The Levi-Civita connection on a submanifold

Let $(\overline{M}, \overline{g})$ be a Riemannian manifold with Levi-Civita connection \overline{D} , and let M be a submanifold of \overline{M} , equipped with the induced metric $g := i^* \overline{g}$, where $i: M \to \overline{M}$ is the inclusion map.

Show that the Levi-Civita connection D of (M, g) satisfies $D_X Y = (\bar{D}_X Y)^T$ for all $X, Y \in \Gamma(TM)$, where the superscript T denotes the component tangential to M and $\bar{D}_X Y$ is defined(!) as $\bar{D}_X Y \coloneqq \bar{D}_{\bar{X}} \bar{Y}$ for any extensions $\bar{X}, \bar{Y} \in \Gamma(T\bar{M})$ of X, Y.

3. Gradient and Hessian form

Let (M, g) be a Riemannian manifold, D the Levi-Civita connection and $f: M \to \mathbb{R}$ a smooth function on M.

a) The gradient grad $f \in \Gamma(TM)$ is defined by

$$df(X) = g(\operatorname{grad} f, X), \quad \forall X \in \Gamma(TM).$$

Compute $\operatorname{grad} f$ in local coordinates.

b) The Hessian form $\text{Hess}(f) \in \Gamma(T_{0,2}M)$ is defined by

$$\operatorname{Hess}(f)(X,Y) = g(D_X \operatorname{grad} f, Y), \quad \forall X, Y \in \Gamma(TM).$$

Prove that $\operatorname{Hess}(f)$ is symmetric and compute $\operatorname{Hess}(f)$ in local coordinates.