Exercise Sheet 3

1. Motivation of the geodesic equation

Let (M, g) be a compact Riemannian manifold and $c:[a, b] \rightarrow M$ a smooth curve parametrised by the arc length. Suppose that $c([a, b])$ is covered by one chart (ϕ, U). Construct m smooth variations $\gamma_{\ell}:(-\epsilon, \epsilon) \times[a, b] \rightarrow M$ such that the associated variation vector fields along $c, V_{\ell, 0}:=\left(\left(\gamma_{\ell}\right) * \frac{\partial}{\partial s}\right)(0, \cdot) \in$ $\Gamma\left(c^{*} T M\right)$, satisfy that $\left\{V_{\ell, 0}(t)\right\}_{1 \leq \ell \leq m}$ is a basis of $T M_{c(t)}$ for all $t \in[a, b]$. Deduce that any smooth length-minimising curve is a geodesic (from the first variation of arc length [Theorem 1.15 in Prof. Lang's notes]).

2. Existence of closed geodesics

Let (M, g) be a compact Riemannian manifold and $c_{0}: S^{1} \rightarrow M$ a continuous closed curve. The purpose of this exercise is to show that in the family of all continuous and piece-wise C^{1} curves $c: S^{1} \rightarrow M$ which are homotopic to c_{0}, there is a shortest one and it is a geodesic.
a) Show that c_{0} is homotopic to a piece-wise C^{1}-curve c_{1} with finite length.
b) Let $L:=\inf _{c} L(c)$ be the infimum over all piece-wise C^{1} curves $c: S^{1} \rightarrow$ M homotopic to c_{0} and consider a minimizing sequence $\left(c_{n}: S^{1} \rightarrow M\right)_{n}$ with $\lim _{n} L\left(c_{n}\right)=L$. Use compactness of M to construct a piece-wise C^{1}-curve $c: S^{1} \rightarrow M$ with length L.

Hint. Cover M with simply connected balls with the property that every two points in a ball are joined by a unique distance minimizing geodesic.
c) Conclude by showing that c is homotopic to c_{0} and a geodesic.

Prof. Dr. Joaquim Serra

3. Metric and Riemannian isometries

Let (M, g) and (\bar{M}, \bar{g}) be two connected Riemannian manifolds with induced distance functions d and \bar{d}, respectively. Further, let $f:(M, d) \rightarrow(\bar{M}, \bar{d})$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p^{\prime} \in M$ we have $\bar{d}\left(f(p), f\left(p^{\prime}\right)\right)=d\left(p, p^{\prime}\right)$.
a) Prove that for every geodesic γ in $M, \bar{\gamma}:=f \circ \gamma$ is a geodesic in N.
b) Let $p \in M$. Define $F: T M_{p} \rightarrow T \bar{M}_{f(p)}$ with

$$
F(X):=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma_{X}(t)
$$

where γ_{X} is the geodesic with $\gamma_{X}(0)=p$ and $\dot{\gamma}(0)=X$. Show that F is surjective and satisfies $F(c X)=c F(X)$ for all $X \in T M_{p}$ and $c \in \mathbb{R}$.
c) Conclude that F is an isometry by proving $\|F(X)\|=\|X\|$.
d) Prove that F is linear and conclude that f is smooth in a neighborhood of p.
e) Prove that f is a diffeomorphism for which $f^{*} \bar{g}=g$ holds.

