Exercise Sheet 5

1. Divergence and Laplacian

Let (M, q) be a Riemannian manifold with Levi-Civita connection D. The divergence div(Y) of a vector field $Y \in \Gamma(TM)$ is the contraction of the (1,1)-tensor field $DY: X \mapsto D_X Y$ and the Laplacian $\Delta: C^{\infty}(M) \to C^{\infty}(M)$ is defined by $\Delta f \coloneqq \operatorname{div}(\operatorname{grad} f)$. Show that:

- a) $\operatorname{div}(fY) = Y(f) + f \operatorname{div} Y$,
- b) $\Delta(fg) = f\Delta g + g\Delta f + 2\langle \operatorname{grad} f, \operatorname{grad} g \rangle$,
- c) Compute Δf in local coordinates.

2. Codazzi equation

Let $M \subset \overline{M}$ be a submanifold of the Riemannian manifold $(\overline{M}, \overline{q})$. For the second fundamental form h of M, we define

$$(D_X^{\perp}h)(Y,W) := (\bar{D}_X(h(Y,W))^{\perp} - h(D_XY,W) - h(Y,D_XW)),$$

where $W, X, Y \in \Gamma(TM)$. Show that the Codazzi equation

$$\left(\bar{R}(X,Y)W\right)^{\perp} = \left(D_X^{\perp}h\right)(Y,W) - \left(D_Y^{\perp}h\right)(X,W)$$

holds for all $W, X, Y \in \Gamma(TM)$.

3. Sectional curvature of submanifolds

Let (M, \bar{g}) be a Riemannian manifold with sectional curvature sec. Let $p \in M$ and $L \subset T\overline{M}_p$ an *m*-dimensional linear subspace.

- a) Prove that there is some r > 0 such that for the open ball $B_r(0) \subset TM_p$, the set $M \coloneqq \exp_n(L \cap B_r(0))$ is an *m*-dimensional submanifold of *M*.
- b) Let g be the induced metric on M and let see be the sectional curvature of M. Show that for $E \subset TM_p$, we have $\sec_p(E) = \overline{\sec}_p(E)$ and if L is a 2-dimensional subspace, then $\sec \leq \overline{\sec}$ on M.