Exercise Sheet 6

1. Revisiting connections

(a) Fix some manifold M with a connection ∇ . Take any (1,2) tensor field F and define

$$\nabla_X Y := \nabla_X Y + F(X, Y).$$

Show that

- $\widetilde{\nabla}$ is a connection
- For every connection $\hat{\nabla}$ on M there is a unique (1,2) tensor \hat{F} such that $\hat{\nabla} \nabla = \hat{F}$. Show that in local coordinates $\hat{\Gamma}_{ij}^k \Gamma_{ij}^k = F_{ij}^k$. Double check that the difference of two Christoffel symbols indeed transforms like a (1,2) tensor field.

(b) Let $\nabla, \widetilde{\nabla}$ be two connections on M and $F(X,Y) := \widetilde{\nabla}_X Y - \nabla_X Y$ be their difference. Show that ∇ and $\widetilde{\nabla}$ have the same geodesics if and only if F is antisymmetric i.e., F(X,Y) = -F(Y,X). Recall that a geodesic for ∇ is a self-parallel curve w.r.t. ∇ , this translates in the ODE (with a harmless abuse of notation) $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$.

Conclude that if ∇ and $\widetilde{\nabla}$ have the same geodesics and the same torsion then $\nabla = \widetilde{\nabla}$.

2. Meaning of the torsion

Consider the manifold (\mathbb{R}^3, g_{Eucl}) endowed with the Levi-Civita connection ∇ . Define another connection $\widetilde{\nabla}$ by

$$\widetilde{\nabla}_{\partial_i}\partial_j = \varepsilon_{ij}^k \partial_k \quad (\Longleftrightarrow \widetilde{\Gamma}_{ij}^k := \varepsilon_{ij}^k),$$

where ε_{ij}^k is the sign of the permutation $(1, 2, 3) \mapsto (i, j, k)$, and zero otherwise.

$$(\nabla_v X)_p = (\nabla_v X)_p - X_p \times v.$$

• Compute the parallel transport of v := (1, 0, 0) along $\gamma(t) := (0, 0, t)$. This should clarify where is the "torsion". D-MATH Differential Geometry II FS23 Prof. Dr. Joaquim Serra

• Show that, up to a multiplicative $C^{\infty}(\mathbb{R}^3)$ function in the Christoffels, $\widetilde{\nabla}$ is the unique connection that is *g*-compatible and has the same geodesics of ∇ .

3. The sphere

Use Gauss' equations to prove that the sphere of radius r > 0,

$$\mathbb{S}_r^n := \{ x \in \mathbb{R}^{n+1} : |x| = 1 \}$$

has constant sectional curvatures equal to $1/r^2$.