Exercise Sheet 7

1. Jacobi fields in space forms

Let M be a space form with curvature $\kappa \in \mathbb{R}$. Furthermore, let $c: \mathbb{R} \rightarrow M$ be a geodesic which is parametrized by arc length and $N_{0} \in T M_{c(0)}$ with $\left|N_{0}\right|=1,\left\langle N_{0}, \dot{c}(0)\right\rangle=0$. Determine the Jacobi field Y along c with starting conditions $Y(0)=a N_{0}$ and $\dot{Y}(0)=b N_{0}$ for $a, b \in \mathbb{R}$.

2. Trace of a symmetric bilinear form

Let $(V,\langle\cdot, \cdot\rangle)$ be a m-dimensional Euclidean space and let $r: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form. Furthermore, let $S^{m-1}=\{v \in V:|v|=1\}$ be the unit sphere. Prove that

$$
\int_{S^{m-1}} r(v, v) \operatorname{dvol}^{S^{m-1}}=\frac{\operatorname{vol}\left(S^{m-1}\right)}{m} \operatorname{tr}(r)=\omega_{m} \operatorname{tr}(r)
$$

where dvol ${ }^{S^{m-1}}$ denotes the induced volume on S^{m-1} and ω_{m} is the volume of the m-dimensional unit ball.

3. Small balls and scalar curvature

Let p be a point in the m-dimensional Riemannian manifold (M, g). The goal is to prove the following Taylor expansion of the volume of the ball $B_{r}(p)$ as a function of r :

$$
\operatorname{vol}\left(B_{r}(p)\right)=\omega_{m} r^{m}\left(1-\frac{1}{6(m+2)} \operatorname{scal}(p) r^{2}+\mathcal{O}\left(r^{3}\right)\right)
$$

a) Let $v \in T M_{p}$ with $|v|=1$, define the geodesic $c(t):=\exp _{p}(t v)$ and let $e_{1}=v, e_{2}, \ldots, e_{m} \in T M_{p}$ be an orthonormal basis. Consider the Jacobi fields Y_{i} along c with $Y_{i}(0)=0$ and $\dot{Y}_{i}(0)=e_{i}$ for $i=2, \ldots m$. Show that the volume distortion factor of $\exp _{p}$ at $t v$ is given by

$$
J(v, t):=\sqrt{\operatorname{det}\left(\left\langle T_{t v} e_{i}, T_{t v} e_{j}\right\rangle\right)}=t^{-(m-1)} \sqrt{\operatorname{det}\left(\left\langle Y_{i}, Y_{j}\right\rangle\right)}
$$

where $T_{t v}:=\left(d \exp _{p}\right)_{t v}$.
b) Let E_{2}, \ldots, E_{m} be parallel vector fields along c with $E_{i}(0)=e_{i}$. Then the Taylor expansion of Y_{i} is

$$
Y_{i}(t)=t E_{i}-\sum_{k=2}^{m}\left(\frac{t^{3}}{6} R\left(e_{i}, v, e_{k}, v\right)+\mathcal{O}\left(t^{4}\right)\right) E_{k}
$$

Prof. Dr. Joaquim Serra
c) Conclude that $J(v, t)=1-\frac{t^{2}}{6} \operatorname{ric}(v, v)+\mathcal{O}\left(t^{4}\right)$.

Hint: Use $\operatorname{det}\left(I_{m}+\epsilon A\right)=1+\epsilon \operatorname{tr}(A)+\mathcal{O}\left(\epsilon^{2}\right)$.
d) Prove the above formula for $\operatorname{vol}\left(B_{r}(p)\right)$.

