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1. Two dimensional Hadamard manifolds

Let (M, g) be a two dimensional Hadamard manifold. For fixed point p ∈M
and isometry H : R2 → TMp, consider (R2, g) where g := (expp ◦H)∗g.

(a) Show that g is of the form

gx(v, w) :=
(
v · x|x|

)(
w · x|x|

)
+
f2(x)

|x|2
(
v · w −

(
v · x|x|

)
(w · x|x|

))
, (1)

where f2(x)/|x|2 is smooth (also at x = 0) and has limit 1 as x → 0,
and where t 7→ f(tx) is nonnegative and convex for any fixed x ∈
R2 \ {0} .

(b) Reciprocally, show that R2 endowed with any metric g satisfying the
properties established in (a) —and such that gx(v, w) extends to a
smooth metric across x = 0— gives a model of a Hadamard manifold
(simply connected with nonpositive sectional curvature at all points).

Solution:. (a) Fix x ∈ R2 \ 0 and let cx(t) be a geodesic emanating from
p, with unit initial velocity H(x)/|x| ∈ TMp . Let E(t) be a parallel unit
vector field along cx which is orthogonal to c′x(t). Notice that Y := φ(t)E is
a Jacobi field if, and only if, φ′′ + (K ◦ cx)φ = 0. Now, for fixed x 6= 0 and
let w ∈ R2 be perpendicular to x, we have

Y (t) := d(expp ◦H)tx/|x|(tw)

is a Jacobi field satisfying Y (0) = 0 and Y ′(0) = w. Hence, by definition
pullback metric g := (expp ◦H)∗g, for t > 0 we have

gtx/|x|(w,w) = g
(
d(expp ◦H)tx/|x|(w), d(expp ◦H)tx/|x|(w)

)
= t−2g

(
Y (t), Y (t)

)
= t−2g

(
|w|φE(t), |w|φE(t)

)
= (φ/t)2|w|2,

where φ is the unique solution of φ′′ + (K ◦ cx)φ = 0 with initial conditition
φ(0) = 0 and φ′(0) = 1.

Hence, setting t = |x| in the equation above and defining f(x) = φ(|x|)
as the unique solution φ′′ + (K ◦ cx)φ = 0 with φ(0) = 0 and φ′(0) = 1
evaluated at time t = |x|, we obtain

gx(w,w) = (f(x)/|x|)2|w|2,

Using that from Gauss’ lemma

gx(v, w) = v · w
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whenever v parallel to x (and w is any vector), we obtain (1).
Finally observer that φ′′ = −(K ◦ cx)φ ≥ 0 implies that φ is convex (and

hence so is t 7→ f(tx)). Also, by l’Hopital’s rule, limt→0 φ(t)/t = φ′(0) = 1
and hence the limit of f2(x)/|x|2 → 1 as x→ 0.

(b) Consider now R2 endowed with a metric of the form (1). Take polar
corrdinates (r, θ) in R2 \ 0. Notice that coordinates the metric is of the form

(gi,j) =

(
1 0
0 E

)
where E = E(r, θ) = g(∂θ, ∂θ) = f2(r cos θ, r sin θ).

The condition that f is convex along rays from 0 reads
(√
E
)
11
≥ 0.

In order to compute the curvature, let us compute the Chistoffel symbols
(we still use polar coordinates). The only nonzero ones are:

Γ2
22 =

E2

2E
, Γ2

12 = Γ2
12 =

E1

2E
, Γ1

22 =
−E1

2

Hence, direct computation shows:

K =
E2

1

4E2
− E11

2E
= −

(√
E
)
11√

E
≤ 0.
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2. Some consequences of non-positive sectional curvature

Let M be a Hadamard manifold. Prove the following:

(a) For each p ∈M , the map (expp)
−1 : M → TMp is 1-Lipschitz.

(b) For p, x, y ∈M , it holds

d(p, x)2 + d(p, y)2 − 2d(p, x)d(p, y) cos γ ≤ d(x, y)2,

where γ denotes the angle in p.

(c) Let m denote the midpoint of the geodesic xy in M and let p ∈ M .
Then we have

d(p,m)2 ≤ d(p, x)2 + d(p, y)2

2
− 1

4
d(x, y)2.

Hint: Prove it first in the Euclidean plane. (This is a rather difficult
but interesting to do exercise if one uses only the results up to Chapter
4 in Prof. Lang’s notes. The exercise becomes simpler if one uses the
content of Chapter 5.)

Solution: (a) By the Theorem of Hadamard-Cartan, we know that expp is a
diffeomorphism, hence (expp)

−1 is well defined.
For x, y ∈ M , let x := (expp)

−1(x) and y := (expp)
−1(y). Furthermo-

re, let c : [0, l] → M be the (minimizing) geodesic from x to y. Then by
Corollary 3.19, we get

d(x, y) ≤ L((expp)
−1 ◦ c) ≤ L(c) = d(x, y).

(b) We denote again x := (expp)
−1(x) for x ∈M . Then this follows directly

from Exercise 2(a) and the law of cosines in TMp:

d(x, y)2 ≥ d(x, y)2

= d(p, x)2 + d(p, y)2 − 2d(p, x)d(p, y) cos γ

= d(p, x)2 + d(p, y)2 − 2d(p, x)d(p, y) cos γ.
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A direct solution of Exercise 2(c). Given a geodesic triangle xyz ∈ M , a
comparison triangle in R2 is a triangle xyz with sides of the same length.
Give q ∈ xy, its comparison point in xyz is q ∈ xy with |xq| = |xq|. We will
show that for all p ∈ xy and q ∈ xz, d(p, q) ≤ d(p, q). 1

Step 1: Let p ∈ M , v, w ∈ TMp and consider the geodesic triangle with
vertices x := expp(v), y := expp(w) and two sides expp(tv), expp(tw) Let
p, x, y be a comparison triangle in R2.

Then we know that d(v, w) ≤ d(x, y) and ]p(x, y) = ]0(v, w), so ]p(x, y) ≥
]0(v, w) = ]p(x, y)

In general for a geodesic triangle xyz in M with internal angles α, β, γ
and a comparison triangle x, y, z with internal angles α, β, γ it holds that

α ≤ α, β ≤ β, γ ≤ γ.

Step 2: Let p, x, y be a geodesic triangle in M and p, x, y be a comparison
triangle in R2. Let q ∈ xy be any point and q ∈ xy its comparison point in
the comparison triangle (d(x, q) = d(x, q)), then

d(p, q) ≤ d(p, q).

Consider the geodesic triangles T ′ = pqx and T ′′ = pqy and their re-
spective comparison triangles T ′ = p′q′x′ and T

′′
= p′′q′′y′′ in R2. Since

d(p, q) = d(p′, q′) = d(p′′, q′′), we can assume that p′ = p′′, q′ = q′′ and
T
′
, T
′′ lie on the opposide side of the straight segment p′q′. Denote

α := ]q(p, x) β := ]q(p, y)

α′ := ]q′(p
′, x′) β′′ := ]q′′(p

′′, y′′).

By the previous step α′ + β′′ ≥ α + β = π. This implies that in order to
make T ′ ∪T ′′ a comparison triangle for pxy we need to increase the distance
from p to q, hence d(p, q) ≥ d(p, q).

1In other words Hadamard manifolds are CAT(0)-spaces.
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Step 3: Let M be a Hadamard manifold and let p, q, r be a geodesic
triangle in M . Let x ∈ qr, y ∈ qp be any two points on its sides, then we
claim that

d(x, y) ≤ d(x, y)

where x, y are comparison points on the sides of a comparison triangle p, q, r
for pqr in R2.

Consider the geodesic triangle qxp and its comparison triangle T ′ with
vertices q′x′p′. Denote by y′ the comparison point of y on T ′. Now, on one
hand we have d(q′, p′) = d(p, q), d(q′, x′) = d(q, p) while on the other hand,
the previous step implies d(x′, p′) ≤ d(x, p) and therefore d(x′, y′) ≤ d(x, y).
As d(x, y) ≤ d(x′, y′) by the previous step, we obtain the claim.

Step 4: We can rewrite the conclusion of the previous lemma in the following
way. Let M be a Hadamard manifold. Let σ, σ′ : [0, 1]→M be two geodesic
with σ(0) = σ′(0) and consider the triangle x := σ(0), y := σ(1), z := σ′(1)
in M . Let 0, v, v′ be a comparison triangle in R2 with |v| = d(σ(0), σ(1)),
|v′| = d(σ′(0), σ′(1)) and |v − v′| = d(σ(1), σ′(1)).

By the previous step

d
(
σ(t), σ′(t′)

)
≤ |tv − t′v′|,

in particular d
(
σ(t), z

)
≤ |tv − v′|. Furthermore |tv − v′|2 − t|v − v′|2 =

t(t − 1)|v|2 + (1 − t)|v′|2, so if we denote m = σ(12), the midpoint of xy we
obtain

d(m, z) ≤ 1

2

(
d(x, z)2 + d(y, z)2

)
− 1

4
d(x, y)2.
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3. Isometries with bounded orbits.

Let M be a Hadamard manifold. Prove the following:

(a) If Y ⊂M is a bounded set, then there is a unique point cY ∈M such
that Y ⊂ B(cY , r), where r := inf{s > 0 : ∃x ∈ M such that Y ⊂
B(x, s)}.

Hint: Prove it first in Euclidean space. It may be useful to use part (c)
of exercise 2. We call cY the center of Y .

(b) Let γ be an isometry of M . Then γ is elliptic if and only if M has a
bounded orbit. Furthermore, if γn is elliptic for some integer n 6= 0,
then γ is elliptic.

Solution: (a) Let (xn)n∈N be a sequence of points such that Y ⊂ B(xn, rn)
for rn > 0 with rn → r. We claim that (xn)n∈N is a Cauchy sequence. Then
it follows that the sequence converges to some cY ∈ M with the required
property and the fact that every such sequence is Cauchy establishes uni-
queness.

Fix some ε > 0 and let N ∈ N such that rn < r + ε for all n ≥ N . For
n, n′ ≥ N let m be the midpoint of xn and xn′ . Then by the definition of r,
there is some y ∈ Y such that d(m, y) ≥ r. By Exercise 2(c), we therefore
get

1

4
d(xn, xn′)2 ≤ d(y, xn)2 + d(y, xn′)2

2
− d(y,m)2

≤
r2n + r2n′

2
− r2

≤ (r + ε)2 − r2 = 2rε+ ε2.

(b) If Y = {γkx : k ∈ Z} is a bounded orbit of γ, then Y is γ invariant and
hence cY is a fixed point.

Let x ∈ M be a fixed point of γn. Then Y = {γkx : k ∈ Z} is finite and
therefore bounded.
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