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Prof. Dr. Joaquim Serra

Solutions 10

1. Two dimensional Hadamard manifolds

Let (M, g) be a two dimensional Hadamard manifold. For fixed point p € M
and isometry H : R? — T'M,, consider (R?,g) where g := (exp, oH)*g.

(a) Show that g is of the form

G.(v,w) = (v &) (w- &)+ I*(x) (v-w—(v-&H)(w-%)), (1)

el

5

where f2(x)/|x|? is smooth (also at x = 0) and has limit 1 as x — 0,
and where ¢t — f(tx) is nonnegative and convex for any fixed z €

R2\ {0} .

(b) Reciprocally, show that R? endowed with any metric g satisfying the
properties established in (a) —and such that g,(v,w) extends to a
smooth metric across x = 0— gives a model of a Hadamard manifold
(simply connected with nonpositive sectional curvature at all points).

Solution:. (a) Fix x € R?\ 0 and let c,(t) be a geodesic emanating from
p, with unit initial velocity H(z)/|z| € TM, . Let E(t) be a parallel unit
vector field along ¢, which is orthogonal to ¢, (). Notice that Y := ¢(t)E is
a Jacobi field if, and only if, ¢” + (K o ¢;)¢ = 0. Now, for fixed 2 # 0 and
let w € R? be perpendicular to =, we have

Y(t) = d(expp OH)tac/\aﬂ(tw)
is a Jacobi field satisfying Y (0) = 0 and Y’(0) = w. Hence, by definition
pullback metric g := (exp, oH)*g, for t > 0 we have
Gt (W, w) = g(d(expy, O H )y 1o (w), d(exp, 0 H )1 (w))
=172g(Y(1),Y (1)) =t 2g(Jw|oE(t), [w]oE(t)) = (¢/t)*|w]?,

where ¢ is the unique solution of ¢" + (K o ¢;)¢ = 0 with initial conditition
$(0) = 0 and ¢(0) = 1.

Hence, setting ¢ = |z| in the equation above and defining f(x) = ¢(|x|)
as the unique solution ¢ + (K o ¢;)¢ = 0 with ¢(0) = 0 and ¢/(0) = 1

evaluated at time ¢ = |x|, we obtain
Go(w,w) = (f(x)/[2])?|w]?,
Using that from Gauss’ lemma

Jy(v,w) =v-w
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whenever v parallel to z (and w is any vector), we obtain ((1)).

Finally observer that ¢" = —(K o¢;)¢ > 0 implies that ¢ is convex (and
hence so is ¢t — f(tz)). Also, by I'Hopital’s rule, lim;_, ¢(t)/t = ¢'(0) = 1
and hence the limit of f2(z)/|z|> — 1 as x — 0.

(b) Consider now R? endowed with a metric of the form (I)). Take polar
corrdinates (r,6) in R?\ 0. Notice that coordinates the metric is of the form

@)= (o )

where E = E(r,0) = §(0y,09) = f?(rcos,rsin6).

The condition that f is convex along rays from 0 reads (\/E)H > 0.

In order to compute the curvature, let us compute the Chistoffel symbols
(we still use polar coordinates). The only nonzero ones are:

Es
2F’

Eq
2F’

—E;
2

2 2 _ 2 _ 1 _
F22_ F12_F12_ F22_

Hence, direct computation shows:

Ko B_Bn_ (VE)y,
4AE?  2F VE —
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2. Some consequences of non-positive sectional curvature

Let M be a Hadamard manifold. Prove the following:
(a) For each p € M, the map (expp)_lz M — T'M, is 1-Lipschitz.

(b) For p,x,y € M, it holds

d(p, )* + d(p,y)* — 2d(p, z)d(p, y) cos y < d(z,y)?,
where v denotes the angle in p.

(c) Let m denote the midpoint of the geodesic zy in M and let p € M.
Then we have

d(p,z)? + d(p,y)?
2

1
d(p,m)? < - 14 )*"

Hint: Prove it first in the Euclidean plane. (This is a rather difficult
but interesting to do exercise if one uses only the results up to Chapter
4 in Prof. Lang’s notes. The exercise becomes simpler if one uses the
content of Chapter 5.)

Solution: (a) By the Theorem of Hadamard-Cartan, we know that exp,, is a
diffeomorphism, hence (exp,)~" is well defined.

For z,y € M, let T := (exp,) *(x) and 7 = (exp,) ' (y). Furthermo-
re, let ¢: [0,1]] — M be the (minimizing) geodesic from x to y. Then by
Corollary 3.19, we get

d(T,7) < L((exp,) ' 0 ¢) < L(c) = d(,y).

(b) We denote again T := (exp,)~!(z) for € M. Then this follows directly
from Exercise 2(a) and the law of cosines in T'M),:

d(z,y)? > d(z,7)>
=d(p,7)* + d(p,7)* — 2d(p,T)d(p,T) cos ¥
=d(p,z)* + d(p,y)* — 2d(p, z)d(p,y) cosy
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A direct solution of Exercise 2(c). Given a geodesic triangle zyz € M, a
comparison triangle in R? is a triangle 7z with sides of the same length.
Give ¢ € zy, its comparison point in Tyz is ¢ € Ty with |Zq| = |zq|. We will
show that for all p € zy and ¢ € zz, d(p,q) < d(p, Q)E

Step 1: Let p € M, v,w € T'M,, and consider the geodesic triangle with
vertices z = exp,(v), y = exp,(w) and two sides exp,(tv), exp,(tw) Let
P, T,y be a comparison triangle in R2.

Then we know that d(v, w) < d(x,y) and £,(z,y) = £Lo(v,w), so £5(T,7) >
Lo(v,w) = £y(w,y)

In general for a geodesic triangle xyz in M with internal angles «, 3,y
and a comparison triangle 7,7, Z with internal angles @, 3,7 it holds that

a<a, B<B, <7

Step 2: Let p,x,y be a geodesic triangle in M and p, =,y be a comparison
triangle in R?. Let ¢ € zy be any point and § € Ty its comparison point in
the comparison triangle (d(z,q) = d(Z,q)), then

d(p,q) < d(p,q).

Consider the geodesic trlangles T = pqm and T"” = pqy and their re-
spective comparison trlangles T = p¢a’ and T = p”q”y” in R?. Slnce
d(p,q) = d(p',q") = d(p",q"), we can assume that p’ = p”, ¢ = ¢’ and
T’,T” lie on the opposide side of the straight segment p’q’. Denote

o= Aq(p7$) B:: Aq(pay>
I quf(p/,x') /3// — A{q”(p//,y”)-
By the prev1ous step o + B” > a + B = w. This implies that in order to

make T UT" a comparison triangle for pxy we need to increase the distance
from P to g, hence d(p,q) > d(p, q).

'In other words Hadamard manifolds are CAT(0)-spaces.
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Step 3: Let M be a Hadamard manifold and let p,q,r be a geodesic
triangle in M. Let x € qr, y € qp be any two points on its sides, then we
claim that

d(x,y) < d(7,7)
where T, 7 are comparison points on the sides of a comparison triangle p, q, 7
for pgr in R2.

¥

Consider the geodesic triangle gxp and its comparison triangle 7”7 with
vertices ¢’x'p’. Denote by 3’ the comparison point of ¥ on 7. Now, on one
hand we have d(¢’,p") = d(p,9), d(¢',2") = d(g,p) while on the other hand,
the previous step implies d(2/,p’) < d(Z,p) and therefore d(z’,y’) < d(7, 7).
As d(x,y) < d(2',y") by the previous step, we obtain the claim.

Step 4: We can rewrite the conclusion of the previous lemma in the following
way. Let M be a Hadamard manifold. Let o,0’: [0,1] — M be two geodesic
with 0(0) = ¢/(0) and consider the triangle x = ¢(0),y = o(1),z :== o'(1)
in M. Let 0,v,v" be a comparison triangle in R? with |v| = d(c(0), (1)),
[v'| = d(0’(0),0'(1)) and |v — v'| = d(o(1),0'(1)).

By the previous step

d(o(t),0'(t) < |tv —t'V'],

in particular d(o(t),z) < |[tv — ¢/|. Furthermore [tv — v/|* — tjv — '|* =
t(t — 1)vf> + (1 — t)[v'|?, so if we denote m = o(3), the midpoint of zy we
obtain

d(m,z) < %(d(x, 2)? +d(y, Z)2> - id(x,y)Q.
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3. Isometries with bounded orbits.

Let M be a Hadamard manifold. Prove the following:

(a) If Y C M is a bounded set, then there is a unique point cy € M such
that Y C B(ey,r), where r == inf{s > 0 : 3z € M such that Y C

B(z,s)}.

Hint: Prove it first in Euclidean space. It may be useful to use part (c)
of exercise 2. We call ¢y the center of Y.

(b) Let 7 be an isometry of M. Then = is elliptic if and only if M has a
bounded orbit. Furthermore, if 4™ is elliptic for some integer n # 0,
then ~ is elliptic.

Solution: (a) Let (z,)nen be a sequence of points such that Y C B(zy, )
for r, > 0 with r,, — r. We claim that (z,),en is a Cauchy sequence. Then
it follows that the sequence converges to some cy € M with the required
property and the fact that every such sequence is Cauchy establishes uni-
queness.

Fix some ¢ > 0 and let N € N such that r,, < r 4+ ¢ for all n > N. For
n,n’ > N let m be the midpoint of z,, and x, . Then by the definition of r,
there is some y € Y such that d(m,y) > r. By Exercise 2(c), we therefore
get

ld(xmﬁfn/)z < d(y’xn)2 + d(y737n’)2
4 2
ThtTa o
<o
<(r+e)?—r?=2re+ .

- d(y7 m)2

(b) If Y = {~*z : k € Z} is a bounded orbit of 7, then Y is v invariant and
hence cy is a fixed point.

Let x € M be a fixed point of ¥*. Then Y = {y*z : k € Z} is finite and
therefore bounded.



