Prof. Dr. Joaquim Serra

Solutions 10

1. Two dimensional Hadamard manifolds

Let (M, g) be a two dimensional Hadamard manifold. For fixed point $p \in M$ and isometry $H: \mathbb{R}^{2} \rightarrow T M_{p}$, consider $\left(\mathbb{R}^{2}, \bar{g}\right)$ where $\bar{g}:=\left(\exp _{p} \circ H\right)^{*} g$.
(a) Show that \bar{g} is of the form

$$
\begin{equation*}
\bar{g}_{x}(v, w):=\left(v \cdot \frac{x}{|x|}\right)\left(w \cdot \frac{x}{|x|}\right)+\frac{f^{2}(x)}{|x|^{2}}\left(v \cdot w-\left(v \cdot \frac{x}{|x|}\right)\left(w \cdot \frac{x}{|x|}\right)\right) \tag{1}
\end{equation*}
$$

where $f^{2}(x) /|x|^{2}$ is smooth (also at $x=0$) and has limit 1 as $x \rightarrow 0$, and where $t \mapsto f(t x)$ is nonnegative and convex for any fixed $x \in$ $\mathbb{R}^{2} \backslash\{0\}$.
(b) Reciprocally, show that \mathbb{R}^{2} endowed with any metric \bar{g} satisfying the properties established in (a) -and such that $g_{x}(v, w)$ extends to a smooth metric across $x=0$ - gives a model of a Hadamard manifold (simply connected with nonpositive sectional curvature at all points).

Solution: (a) Fix $x \in \mathbb{R}^{2} \backslash 0$ and let $c_{x}(t)$ be a geodesic emanating from p, with unit initial velocity $H(x) /|x| \in T M_{p}$. Let $E(t)$ be a parallel unit vector field along c_{x} which is orthogonal to $c_{x}^{\prime}(t)$. Notice that $Y:=\phi(t) E$ is a Jacobi field if, and only if, $\phi^{\prime \prime}+\left(K \circ c_{x}\right) \phi=0$. Now, for fixed $x \neq 0$ and let $w \in \mathbb{R}^{2}$ be perpendicular to x, we have

$$
Y(t):=d\left(\exp _{p} \circ H\right)_{t x /|x|}(t w)
$$

is a Jacobi field satisfying $Y(0)=0$ and $Y^{\prime}(0)=w$. Hence, by definition pullback metric $\bar{g}:=\left(\exp _{p} \circ H\right)^{*} g$, for $t>0$ we have

$$
\begin{aligned}
\bar{g}_{t x /|x|}(w, w) & =g\left(d\left(\exp _{p} \circ H\right)_{t x /|x|}(w), d\left(\exp _{p} \circ H\right)_{t x /|x|}(w)\right) \\
& =t^{-2} g(Y(t), Y(t))=t^{-2} g(|w| \phi E(t),|w| \phi E(t))=(\phi / t)^{2}|w|^{2}
\end{aligned}
$$

where ϕ is the unique solution of $\phi^{\prime \prime}+\left(K \circ c_{x}\right) \phi=0$ with initial conditition $\phi(0)=0$ and $\phi^{\prime}(0)=1$.

Hence, setting $t=|x|$ in the equation above and defining $f(x)=\phi(|x|)$ as the unique solution $\phi^{\prime \prime}+\left(K \circ c_{x}\right) \phi=0$ with $\phi(0)=0$ and $\phi^{\prime}(0)=1$ evaluated at time $t=|x|$, we obtain

$$
\bar{g}_{x}(w, w)=(f(x) /|x|)^{2}|w|^{2}
$$

Using that from Gauss' lemma

$$
\bar{g}_{x}(v, w)=v \cdot w
$$

whenever v parallel to x (and w is any vector), we obtain (1).
Finally observer that $\phi^{\prime \prime}=-\left(K \circ c_{x}\right) \phi \geq 0$ implies that ϕ is convex (and hence so is $t \mapsto f(t x))$. Also, by l'Hopital's rule, $\lim _{t \rightarrow 0} \phi(t) / t=\phi^{\prime}(0)=1$ and hence the limit of $f^{2}(x) /|x|^{2} \rightarrow 1$ as $x \rightarrow 0$.
(b) Consider now \mathbb{R}^{2} endowed with a metric of the form (1). Take polar corrdinates (r, θ) in $\mathbb{R}^{2} \backslash 0$. Notice that coordinates the metric is of the form

$$
\left(g_{i, j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & E
\end{array}\right)
$$

where $E=E(r, \theta)=\bar{g}\left(\partial_{\theta}, \partial_{\theta}\right)=f^{2}(r \cos \theta, r \sin \theta)$.
The condition that f is convex along rays from 0 reads $(\sqrt{E})_{11} \geq 0$.
In order to compute the curvature, let us compute the Chistoffel symbols (we still use polar coordinates). The only nonzero ones are:

$$
\Gamma_{22}^{2}=\frac{E_{2}}{2 E}, \quad \Gamma_{12}^{2}=\Gamma_{12}^{2}=\frac{E_{1}}{2 E}, \quad \Gamma_{22}^{1}=\frac{-E_{1}}{2}
$$

Hence, direct computation shows:

$$
K=\frac{E_{1}^{2}}{4 E^{2}}-\frac{E_{11}}{2 E}=-\frac{(\sqrt{E})_{11}}{\sqrt{E}} \leq 0
$$

Prof. Dr. Joaquim Serra

2. Some consequences of non-positive sectional curvature

Let M be a Hadamard manifold. Prove the following:
(a) For each $p \in M$, the map $\left(\exp _{p}\right)^{-1}: M \rightarrow T M_{p}$ is 1-Lipschitz.
(b) For $p, x, y \in M$, it holds

$$
d(p, x)^{2}+d(p, y)^{2}-2 d(p, x) d(p, y) \cos \gamma \leq d(x, y)^{2}
$$

where γ denotes the angle in p.
(c) Let m denote the midpoint of the geodesic $x y$ in M and let $p \in M$.

Then we have

$$
d(p, m)^{2} \leq \frac{d(p, x)^{2}+d(p, y)^{2}}{2}-\frac{1}{4} d(x, y)^{2}
$$

Hint: Prove it first in the Euclidean plane. (This is a rather difficult but interesting to do exercise if one uses only the results up to Chapter 4 in Prof. Lang's notes. The exercise becomes simpler if one uses the content of Chapter 5.)

Solution: (a) By the Theorem of Hadamard-Cartan, we know that $\exp _{p}$ is a diffeomorphism, hence $\left(\exp _{p}\right)^{-1}$ is well defined.

For $x, y \in M$, let $\bar{x}:=\left(\exp _{p}\right)^{-1}(x)$ and $\bar{y}:=\left(\exp _{p}\right)^{-1}(y)$. Furthermore, let $c:[0, l] \rightarrow M$ be the (minimizing) geodesic from x to y. Then by Corollary 3.19, we get

$$
d(\bar{x}, \bar{y}) \leq L\left(\left(\exp _{p}\right)^{-1} \circ c\right) \leq L(c)=d(x, y)
$$

(b) We denote again $\bar{x}:=\left(\exp _{p}\right)^{-1}(x)$ for $x \in M$. Then this follows directly from Exercise 2(a) and the law of cosines in $T M_{p}$:

$$
\begin{aligned}
d(x, y)^{2} & \geq d(\bar{x}, \bar{y})^{2} \\
& =d(\bar{p}, \bar{x})^{2}+d(\bar{p}, \bar{y})^{2}-2 d(\bar{p}, \bar{x}) d(\bar{p}, \bar{y}) \cos \bar{\gamma} \\
& =d(p, x)^{2}+d(p, y)^{2}-2 d(p, x) d(p, y) \cos \gamma
\end{aligned}
$$

A direct solution of Exercise 2(c). Given a geodesic triangle $x y z \in M$, a comparison triangle in \mathbb{R}^{2} is a triangle $\overline{x y z}$ with sides of the same length. Give $q \in x y$, its comparison point in $\overline{x y z}$ is $\bar{q} \in \overline{x y}$ with $|\overline{x q}|=|x q|$. We will show that for all $p \in x y$ and $q \in x z, d(p, q) \leq d(\bar{p}, \bar{q})$. ${ }^{1}$

Step 1: Let $p \in M, v, w \in T M_{p}$ and consider the geodesic triangle with vertices $x:=\exp _{p}(v), y:=\exp _{p}(w)$ and two sides $\exp _{p}(t v), \exp _{p}(t w)$ Let $\bar{p}, \bar{x}, \bar{y}$ be a comparison triangle in \mathbb{R}^{2}.

Then we know that $d(v, w) \leq d(x, y)$ and $\measuredangle_{p}(x, y)=\measuredangle_{0}(v, w)$, so $\measuredangle_{\bar{p}}(\bar{x}, \bar{y}) \geq$ $\measuredangle_{0}(v, w)=\measuredangle_{p}(x, y)$

In general for a geodesic triangle $x y z$ in M with internal angles α, β, γ and a comparison triangle $\bar{x}, \bar{y}, \bar{z}$ with internal angles $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ it holds that

$$
\alpha \leq \bar{\alpha}, \quad \beta \leq \bar{\beta}, \quad \gamma \leq \bar{\gamma}
$$

Step 2: Let p, x, y be a geodesic triangle in M and $\bar{p}, \bar{x}, \bar{y}$ be a comparison triangle in \mathbb{R}^{2}. Let $q \in x y$ be any point and $\bar{q} \in \overline{x y}$ its comparison point in the comparison triangle $(d(x, q)=d(\bar{x}, \bar{q}))$, then

$$
d(p, q) \leq d(\bar{p}, \bar{q})
$$

Consider the geodesic triangles $T^{\prime}=p q x$ and $T^{\prime \prime}=p q y$ and their respective comparison triangles $\bar{T}^{\prime}=p^{\prime} q^{\prime} x^{\prime}$ and $\bar{T}^{\prime \prime}=p^{\prime \prime} q^{\prime \prime} y^{\prime \prime}$ in \mathbb{R}^{2}. Since $d(p, q)=d\left(p^{\prime}, q^{\prime}\right)=d\left(p^{\prime \prime}, q^{\prime \prime}\right)$, we can assume that $p^{\prime}=p^{\prime \prime}, q^{\prime}=q^{\prime \prime}$ and $\bar{T}^{\prime}, \bar{T}^{\prime \prime}$ lie on the opposide side of the straight segment $p^{\prime} q^{\prime}$. Denote

$$
\begin{aligned}
\alpha & :=\measuredangle_{q}(p, x) & \beta & :=\measuredangle_{q}(p, y) \\
\alpha^{\prime} & :=\measuredangle_{q^{\prime}}\left(p^{\prime}, x^{\prime}\right) & \beta^{\prime \prime} & :=\measuredangle_{q^{\prime \prime}}\left(p^{\prime \prime}, y^{\prime \prime}\right)
\end{aligned}
$$

By the previous step $\alpha^{\prime}+\beta^{\prime \prime} \geq \alpha+\beta=\pi$. This implies that in order to make $\bar{T}^{\prime} \cup \bar{T}^{\prime \prime}$ a comparison triangle for $p x y$ we need to increase the distance from \bar{p} to \bar{q}, hence $d(\bar{p}, \bar{q}) \geq d(p, q)$.

[^0]Prof. Dr. Joaquim Serra

Step 3: Let M be a Hadamard manifold and let p, q, r be a geodesic triangle in M. Let $x \in q r, y \in q p$ be any two points on its sides, then we claim that

$$
d(x, y) \leq d(\bar{x}, \bar{y})
$$

where \bar{x}, \bar{y} are comparison points on the sides of a comparison triangle $\bar{p}, \bar{q}, \bar{r}$ for $p q r$ in \mathbb{R}^{2}.

Consider the geodesic triangle $q x p$ and its comparison triangle T^{\prime} with vertices $q^{\prime} x^{\prime} p^{\prime}$. Denote by y^{\prime} the comparison point of y on T^{\prime}. Now, on one hand we have $d\left(q^{\prime}, p^{\prime}\right)=d(\bar{p}, \bar{q}), d\left(q^{\prime}, x^{\prime}\right)=d(\bar{q}, \bar{p})$ while on the other hand, the previous step implies $d\left(x^{\prime}, p^{\prime}\right) \leq d(\bar{x}, \bar{p})$ and therefore $d\left(x^{\prime}, y^{\prime}\right) \leq d(\bar{x}, \bar{y})$. As $d(x, y) \leq d\left(x^{\prime}, y^{\prime}\right)$ by the previous step, we obtain the claim.

Step 4: We can rewrite the conclusion of the previous lemma in the following way. Let M be a Hadamard manifold. Let $\sigma, \sigma^{\prime}:[0,1] \rightarrow M$ be two geodesic with $\sigma(0)=\sigma^{\prime}(0)$ and consider the triangle $x:=\sigma(0), y:=\sigma(1), z:=\sigma^{\prime}(1)$ in M. Let $0, v, v^{\prime}$ be a comparison triangle in \mathbb{R}^{2} with $|v|=d(\sigma(0), \sigma(1))$, $\left|v^{\prime}\right|=d\left(\sigma^{\prime}(0), \sigma^{\prime}(1)\right)$ and $\left|v-v^{\prime}\right|=d\left(\sigma(1), \sigma^{\prime}(1)\right)$.

By the previous step

$$
d\left(\sigma(t), \sigma^{\prime}\left(t^{\prime}\right)\right) \leq\left|t v-t^{\prime} v^{\prime}\right|
$$

in particular $d(\sigma(t), z) \leq\left|t v-v^{\prime}\right|$. Furthermore $\left|t v-v^{\prime}\right|^{2}-t\left|v-v^{\prime}\right|^{2}=$ $t(t-1)|v|^{2}+(1-t)\left|v^{\prime}\right|^{2}$, so if we denote $m=\sigma\left(\frac{1}{2}\right)$, the midpoint of $x y$ we obtain

$$
d(m, z) \leq \frac{1}{2}\left(d(x, z)^{2}+d(y, z)^{2}\right)-\frac{1}{4} d(x, y)^{2}
$$

Prof. Dr. Joaquim Serra

3. Isometries with bounded orbits.

Let M be a Hadamard manifold. Prove the following:
(a) If $Y \subset M$ is a bounded set, then there is a unique point $c_{Y} \in M$ such that $Y \subset \bar{B}\left(c_{Y}, r\right)$, where $r:=\inf \{s>0: \exists x \in M$ such that $Y \subset$ $\bar{B}(x, s)\}$.

Hint: Prove it first in Euclidean space. It may be useful to use part (c) of exercise 2 . We call c_{Y} the center of Y.
(b) Let γ be an isometry of M. Then γ is elliptic if and only if M has a bounded orbit. Furthermore, if γ^{n} is elliptic for some integer $n \neq 0$, then γ is elliptic.

Solution: (a) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of points such that $Y \subset \bar{B}\left(x_{n}, r_{n}\right)$ for $r_{n}>0$ with $r_{n} \rightarrow r$. We claim that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Then it follows that the sequence converges to some $c_{Y} \in M$ with the required property and the fact that every such sequence is Cauchy establishes uniqueness.

Fix some $\epsilon>0$ and let $N \in \mathbb{N}$ such that $r_{n}<r+\epsilon$ for all $n \geq N$. For $n, n^{\prime} \geq N$ let m be the midpoint of x_{n} and $x_{n^{\prime}}$. Then by the definition of r, there is some $y \in Y$ such that $d(m, y) \geq r$. By Exercise 2(c), we therefore get

$$
\begin{aligned}
\frac{1}{4} d\left(x_{n}, x_{n^{\prime}}\right)^{2} & \leq \frac{d\left(y, x_{n}\right)^{2}+d\left(y, x_{n^{\prime}}\right)^{2}}{2}-d(y, m)^{2} \\
& \leq \frac{r_{n}^{2}+r_{n^{\prime}}^{2}}{2}-r^{2} \\
& \leq(r+\epsilon)^{2}-r^{2}=2 r \epsilon+\epsilon^{2} .
\end{aligned}
$$

(b) If $Y=\left\{\gamma^{k} x: k \in \mathbb{Z}\right\}$ is a bounded orbit of γ, then Y is γ invariant and hence c_{Y} is a fixed point.

Let $x \in M$ be a fixed point of γ^{n}. Then $Y=\left\{\gamma^{k} x: k \in \mathbb{Z}\right\}$ is finite and therefore bounded.

[^0]: ${ }^{1}$ In other words Hadamard manifolds are $\operatorname{CAT}(0)$-spaces.

