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1. Asymptotic expansion of the circumference

Let M be a manifold, E ⊂ TMp a linear 2-plane and γr ⊂ E a circle with
center 0 and radius r > 0 sufficiently small. Show that

L(exp(γr)) = 2π

(
r − sec(E)

6
r3 +O(r4)

)
for r → 0.

Solutions. Let v, w ∈ TMp be an orthonormal basis of E. Then the circle
can be parametrized by γr(ϕ) = r(v cosϕ + w sinϕ). For some fixed ϕ0 ∈
[0, 2π], consider the Jacobi field Yϕ0(r) associated to the geodesic variation
V (ϕ, r) := exp(γr(ϕ)) of the geodesic cϕ0(r) := exp(γr(ϕ0)). Then it holds

L(exp(γr)) =

∫ 2π

0
|Yϕ(r)| dϕ.

We will now compute the Taylor expansion for |Y0(r)| (compare with Serie
7, Exercise 3), all other cases are similar. We have Y0(0) = 0 and Y ′0(0) = w.
From the Jacobi equation we also get

Y ′′0 (0) = −R
(
Y0, c

′
0

)
c′0

∣∣∣
r=0

= 0.

Now taking the derivative of the Jacobi equation, we get

Y ′′′0 (0) = −D
dr
R
(
Y0, c

′
0

)
c′0

∣∣∣
r=0

= −R
(
Y ′0 , c

′
0

)
c′0

∣∣∣
r=0

= −R(w, v)v.

It follows that
|Y0(r)| = r − R(w, v, w, v)

6
r3 +O(r4).

Therefore, we finally get

L(exp(γr)) =

∫ 2π

0

(
r − sec(E)

6
r3 +O(r4)

)
dϕ = 2π

(
r − sec(E)

6
r3 +O(r4)

)
,

as it was to show.
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2. Isoperimetric problem in two dimensional Hadamard manifolds

Let M be a 2-dimensional Hadamard manifold. Given Ω ⊂M bounded, we
say that ∂Ω is C2 if it consists of a finite disjoint union of C2 simple close
curves. For such Ω define the isoperimetric quotient

I(Ω) :=
length(∂Ω)

area(Ω)
1
2

.

a) Suppose first that M is isometric to the Euclidean plane. Show that if
Ω0 is a minimizer of I (such that ∂Ω0 is C2) then

I(Ω0) =
√

4π and Ω0 is an Euclidean disc.

Hint: Show that a smooth minimizer ∂Ω0 must consist of exactly simple
curve γ, and prove (using the first variation of arc length) that the
geodesic curvature κg of γ must be constant. Deduce that γ must trace
a circle in R2.

b) In the case of nonnegative Gauss curvature K ≤ 0, show that if Ω0 is
a minimizer of I (with ∂Ω0 of class C2) then I(Ω0) =

√
4π, and Ω0 is

isometric to an Euclidean ball.

Hint: Using small metric ballsBr(p) ⊂M , with r � 1 as “competitors”,
prove that I(Ω0) ≤

√
4π. Show that, as in a), ∂Ω0 must consist of only

one closed simple curve γ. Let ν be the inwards unit normal to ∂Ω0,
define (for ε small) γε(t) := γ(t) + εν(t), and let Ωε be the bounded
connected component of M \ image(γε). Show that d

dε

∣∣
ε=0

I(Ωε) ≤ 0,
and < 0 unless K ≡ 0 in Ω0.

Solutions. a) LetM = R2 with Euclidean metric. Note that if Ω0 has multiple
components each is a closed simple curve. Hence, the image of each of these
curves it divides R2 into two connected components (one bounded and one
unbounded). Now, the union of (the closures of) the bounded components
is a new set which contains Ω0 and whose boundary is contained in ∂Ω0.
Hence, this set obtained by “filling the holes” it would have more area and
less perimeter, contradicting the fact that Ω0 minimizes I.

Let γ : (0, L) → R2 be a curve tracing ∂Ω0, parametrized by the arc
length, and let ν : [0, L] → S1 be the inwards unit normal. Given ξ ∈
C2

closed([a, b]) define γε(t) := γ(t) + εξ(t)ν(t) and let Ωε be the bounded
connected component of R2\image(γε). If

∫ L
0 ξ(t) = 0 then d

dε

∣∣
ε=0

area(Ωε) =

0. Hence be minimality it must be d
dε

∣∣
ε=0

length(Ωε) =
∫ L

0 κg(t)ξ(t)dt = 0.
Since ξ is an arbitrary average zero smooth function we deduce that κg ≡
κ = constant or equivalently c′′ ≡ κν. This easily implies that c traces a
circle with radius 1/κ.
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b) Using e.g. Exercice 1, we obtain that, for all p ∈ M , area(Br(p)) =
πr2(1 + O(r2)) and length(∂Br(p)) = 2πr(1 + O(r2)) as r ↓ 0. This gives
I(Ω0) ≤

√
4π.

As in a) —using that M diffeomorphic to R2—, ∂Ω0 must consist of
only one simple closed curve γ. Let ν be the inwards unit normal to ∂Ω0 let
κg := 〈c′′, ν〉 be the geodesic curvature, where c′′ = D

dtc
′. Define (for ε small)

γε(t) := γ(t) + εν(t), and let Ωε be the bounded connected component of
M \ image(γε). Let us show that show that d

dε

∣∣
ε=0
I(Ωε) ≤ 0, and < 0 unless

K ≡ 0 in Ω0.
Indeed, on the one hand d

dε

∣∣
ε=0

area(Ωε) = −length(∂Ω0). On the other
hand, d

dε

∣∣
ε=0

length(Ωε) = −
∫
∂Ω0

κgds

Now, using Gauss-Bonnet,
∫
∂Ω0

κgds = 2π −
∫

Ω0
KdA ≥ 2π (>2π unless

K ≡ 0). Hence,

d
dε

∣∣
ε=0
I(Ωε) =

d
dε

∣∣
ε=0

length(∂Ωε)

area(Ω0)
1
2

− 1

2

length(∂Ω0) ddε
∣∣
ε=0

area(Ωε)

area(Ω0)
3
2

≤ (<)− 2π

area(Ω0)
1
2

+
1

2

length(∂Ω0)2

area(Ω0)
3
2

=
1

2

−4π + I(∂Ω0)2

area(Ω0)
1
2

≤ 0,

since I(Ω0)2 ≤ 4π. This contradicts the minimality of Ω0 unless the second
inequality is an equality, which implies that K ≡ 0 in Ω0.

3. Characterization of the cut value

Let M be a complete Riemannian manifold. Given p ∈M and u ∈ TMp we
define the cut value of u as the number

tu := sup{t > 0 : d(expp(tu), p) = t}.

Let cu : R → M , cu(t) := expp(tu), be a unit speed geodesic. If the cut
value tu is finite then (at least) one of the following holds for t = tu:

(i) cu(t) is the first conjugate point of p along cu|[0,t],

(ii) there exists v ∈ TMp, |v| = 1, v 6= u with cu(t) = cv(t).

Conversely, if (i) or (ii) is satisfied for some t ∈ (0,∞), then tu ≤ t.

Solution. For a sequence ti ↓ tu, let γi be a minimizing unit speed geodesic
from p to cu(ti) and define vi := γ′i(0) ∈ Sm−1 ⊂ TMp. By compactness
of Sm−1, we may assume that vi → v. By continuity, we get that cv is a
minimizing geodesic from p to cu(tu).
If v 6= u, we have assertion (ii).
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If u = v, we will show that (i) holds. As cu = cv is minimizing up to cu(tu),
there are no conjugate points on cu|[0,tu] before cu(tu). By Lemma 3.11 it
suffices to show that d expp is singular at tuu. If not, then there is some
neighborhood U of tuu where expp is a diffeomorphism. By the definition of
γi = cvi , we have cu(ti) = cvi(t

′
i) for t′i ≤ ti. For i large enough, it holds that

tiu, t
′
ivi ∈ U . Then

expp(tiu) = cu(ti) = cvi(t
′
i) = expp(t

′
ivi)

and therefore tiu = t′ivi and u = vi, which contradicts the definition of tu.

Conversely, if (i) holds for some t0, then tu ≤ t0 since a geodesic does not
minimize distance after the first conjugate point.

Suppose now that (ii) holds. Let U be a uniquely geodesic neighborhood
of cu(t0) = cv(t0), take ε > 0 such that cu(t0 + ε), cv(t0 − ε) ∈ U and let σ
be the unique geodesic from cv(t0 − ε) to cu(t0 + ε). Then either L(σ) < 2ε,
and then then cv|[0,t0−ε] ∪ σ is a path from p to cu(t0 + ε) which is strictly
shorter that cu|[0,t0+ε] and therefore tu ≤ t0 + ε. Or L(σ) = 2ε, but then
cu(t0 + ε) = cv(t0 − ε) and if c|[0,t0+ε] were minimizing we would have

t0 + ε = L
(
c|[0,t0+ε]

)
≤ L

(
γ|[0,t0−ε]

)
= t0 − ε,

a contradiction. Thus tu ≤ t0 + ε, and as this holds for all ε small enough
the result follows.
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