Solutions 11

1. Asymptotic expansion of the circumference

Let M be a manifold, $E \subset T M_{p}$ a linear 2-plane and $\gamma_{r} \subset E$ a circle with center 0 and radius $r>0$ sufficiently small. Show that

$$
L\left(\exp \left(\gamma_{r}\right)\right)=2 \pi\left(r-\frac{\sec (E)}{6} r^{3}+\mathcal{O}\left(r^{4}\right)\right)
$$

for $r \rightarrow 0$.

Solutions. Let $v, w \in T M_{p}$ be an orthonormal basis of E. Then the circle can be parametrized by $\gamma_{r}(\varphi)=r(v \cos \varphi+w \sin \varphi)$. For some fixed $\varphi_{0} \in$ $[0,2 \pi]$, consider the Jacobi field $Y_{\varphi_{0}}(r)$ associated to the geodesic variation $V(\varphi, r):=\exp \left(\gamma_{r}(\varphi)\right)$ of the geodesic $c_{\varphi_{0}}(r):=\exp \left(\gamma_{r}\left(\varphi_{0}\right)\right)$. Then it holds

$$
L\left(\exp \left(\gamma_{r}\right)\right)=\int_{0}^{2 \pi}\left|Y_{\varphi}(r)\right| d \varphi
$$

We will now compute the Taylor expansion for $\left|Y_{0}(r)\right|$ (compare with Serie 7, Exercise 3), all other cases are similar. We have $Y_{0}(0)=0$ and $Y_{0}^{\prime}(0)=w$. From the Jacobi equation we also get

$$
Y_{0}^{\prime \prime}(0)=-\left.R\left(Y_{0}, c_{0}^{\prime}\right) c_{0}^{\prime}\right|_{r=0}=0
$$

Now taking the derivative of the Jacobi equation, we get

$$
Y_{0}^{\prime \prime \prime}(0)=-\left.\frac{D}{d r} R\left(Y_{0}, c_{0}^{\prime}\right) c_{0}^{\prime}\right|_{r=0}=-\left.R\left(Y_{0}^{\prime}, c_{0}^{\prime}\right) c_{0}^{\prime}\right|_{r=0}=-R(w, v) v
$$

It follows that

$$
\left|Y_{0}(r)\right|=r-\frac{R(w, v, w, v)}{6} r^{3}+\mathcal{O}\left(r^{4}\right)
$$

Therefore, we finally get
$L\left(\exp \left(\gamma_{r}\right)\right)=\int_{0}^{2 \pi}\left(r-\frac{\sec (E)}{6} r^{3}+\mathcal{O}\left(r^{4}\right)\right) d \varphi=2 \pi\left(r-\frac{\sec (E)}{6} r^{3}+\mathcal{O}\left(r^{4}\right)\right)$,
as it was to show.

Prof. Dr. Joaquim Serra

2. Isoperimetric problem in two dimensional Hadamard manifolds

Let M be a 2-dimensional Hadamard manifold. Given $\Omega \subset M$ bounded, we say that $\partial \Omega$ is C^{2} if it consists of a finite disjoint union of C^{2} simple close curves. For such Ω define the isoperimetric quotient

$$
\mathcal{I}(\Omega):=\frac{\operatorname{length}(\partial \Omega)}{\operatorname{area}(\Omega)^{\frac{1}{2}}}
$$

a) Suppose first that M is isometric to the Euclidean plane. Show that if Ω_{0} is a minimizer of \mathcal{I} (such that $\partial \Omega_{0}$ is C^{2}) then

$$
\mathcal{I}\left(\Omega_{0}\right)=\sqrt{4 \pi} \text { and } \Omega_{0} \text { is an Euclidean disc. }
$$

Hint: Show that a smooth minimizer $\partial \Omega_{0}$ must consist of exactly simple curve γ, and prove (using the first variation of arc length) that the geodesic curvature κ_{g} of γ must be constant. Deduce that γ must trace a circle in \mathbb{R}^{2}.
b) In the case of nonnegative Gauss curvature $K \leq 0$, show that if Ω_{0} is a minimizer of \mathcal{I} (with $\partial \Omega_{0}$ of class C^{2}) then $\mathcal{I}\left(\Omega_{0}\right)=\sqrt{4 \pi}$, and Ω_{0} is isometric to an Euclidean ball.

Hint: Using small metric balls $B_{r}(p) \subset M$, with $r \ll 1$ as "competitors", prove that $\mathcal{I}\left(\Omega_{0}\right) \leq \sqrt{4 \pi}$. Show that, as in a), $\partial \Omega_{0}$ must consist of only one closed simple curve γ. Let ν be the inwards unit normal to $\partial \Omega_{0}$, define (for ε small) $\gamma_{\varepsilon}(t):=\gamma(t)+\varepsilon \nu(t)$, and let Ω_{ε} be the bounded connected component of $M \backslash$ image $\left(\gamma_{\varepsilon}\right)$. Show that $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} I\left(\Omega_{\varepsilon}\right) \leq 0$, and <0 unless $K \equiv 0$ in Ω_{0}.

Solutions. a) Let $M=\mathbb{R}^{2}$ with Euclidean metric. Note that if Ω_{0} has multiple components each is a closed simple curve. Hence, the image of each of these curves it divides \mathbb{R}^{2} into two connected components (one bounded and one unbounded). Now, the union of (the closures of) the bounded components is a new set which contains Ω_{0} and whose boundary is contained in $\partial \Omega_{0}$. Hence, this set obtained by "filling the holes" it would have more area and less perimeter, contradicting the fact that Ω_{0} minimizes \mathcal{I}.

Let $\gamma:(0, L) \rightarrow \mathbb{R}^{2}$ be a curve tracing $\partial \Omega_{0}$, parametrized by the arc length, and let $\nu:[0, L] \rightarrow \mathbb{S}^{1}$ be the inwards unit normal. Given $\xi \in$ $C_{\text {closed }}^{2}([a, b])$ define $\gamma_{\varepsilon}(t):=\gamma(t)+\varepsilon \xi(t) \nu(t)$ and let Ω_{ε} be the bounded connected component of $\mathbb{R}^{2} \backslash \operatorname{image}\left(\gamma_{\varepsilon}\right)$. If $\int_{0}^{L} \xi(t)=0$ then $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{area}\left(\Omega_{\varepsilon}\right)=$ 0 . Hence be minimality it must be $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{length}\left(\Omega_{\varepsilon}\right)=\int_{0}^{L} \kappa_{g}(t) \xi(t) d t=0$. Since ξ is an arbitrary average zero smooth function we deduce that $\kappa_{g} \equiv$ $\kappa=$ constant or equivalently $c^{\prime \prime} \equiv \kappa \nu$. This easily implies that c traces a circle with radius $1 / \kappa$.

Prof. Dr. Joaquim Serra
b) Using e.g. Exercice 1, we obtain that, for all $p \in M$, $\operatorname{area}\left(B_{r}(p)\right)=$ $\pi r^{2}\left(1+\mathcal{O}\left(r^{2}\right)\right)$ and length $\left(\partial B_{r}(p)\right)=2 \pi r\left(1+\mathcal{O}\left(r^{2}\right)\right)$ as $r \downarrow 0$. This gives $\mathcal{I}\left(\Omega_{0}\right) \leq \sqrt{4 \pi}$.

As in a) —using that M diffeomorphic to $\mathbb{R}^{2}-, \partial \Omega_{0}$ must consist of only one simple closed curve γ. Let ν be the inwards unit normal to $\partial \Omega_{0}$ let $\kappa_{g}:=\left\langle c^{\prime \prime}, \nu\right\rangle$ be the geodesic curvature, where $c^{\prime \prime}=\frac{D}{d t} c^{\prime}$. Define (for ε small) $\gamma_{\varepsilon}(t):=\gamma(t)+\varepsilon \nu(t)$, and let Ω_{ε} be the bounded connected component of $M \backslash$ image $\left(\gamma_{\varepsilon}\right)$. Let us show that show that $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathcal{I}\left(\Omega_{\varepsilon}\right) \leq 0$, and <0 unless $K \equiv 0$ in Ω_{0}.

Indeed, on the one hand $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{area}\left(\Omega_{\varepsilon}\right)=-$ length $\left(\partial \Omega_{0}\right)$. On the other hand, $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{length}\left(\Omega_{\varepsilon}\right)=-\int_{\partial \Omega_{0}} \kappa_{g} d s$

Now, using Gauss-Bonnet, $\int_{\partial \Omega_{0}} \kappa_{g} d s=2 \pi-\int_{\Omega_{0}} K d A \geq 2 \pi(>2 \pi$ unless $K \equiv 0)$. Hence,

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \mathcal{I}\left(\Omega_{\varepsilon}\right) & =\frac{\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{length}\left(\partial \Omega_{\varepsilon}\right)}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{1}{2}}}-\frac{1}{2} \frac{\left.\operatorname{length}\left(\partial \Omega_{0}\right) \frac{d}{d \varepsilon}\right|_{\varepsilon=0} \operatorname{area}\left(\Omega_{\varepsilon}\right)}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{3}{2}}} \\
& \leq(<)-\frac{2 \pi}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{1}{2}}}+\frac{1}{2} \frac{\operatorname{length}\left(\partial \Omega_{0}\right)^{2}}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{3}{2}}} \\
& =\frac{1}{2} \frac{-4 \pi+\mathcal{I}\left(\partial \Omega_{0}\right)^{2}}{\operatorname{area}\left(\Omega_{0}\right)^{\frac{1}{2}}} \leq 0,
\end{aligned}
$$

since $\mathcal{I}\left(\Omega_{0}\right)^{2} \leq 4 \pi$. This contradicts the minimality of Ω_{0} unless the second inequality is an equality, which implies that $K \equiv 0$ in Ω_{0}.

3. Characterization of the cut value

Let M be a complete Riemannian manifold. Given $p \in M$ and $u \in T M_{p}$ we define the cut value of u as the number

$$
t_{u}:=\sup \left\{t>0: d\left(\exp _{p}(t u), p\right)=t\right\}
$$

Let $c_{u}: \mathbb{R} \rightarrow M, c_{u}(t):=\exp _{p}(t u)$, be a unit speed geodesic. If the cut value t_{u} is finite then (at least) one of the following holds for $t=t_{u}$:
(i) $c_{u}(t)$ is the first conjugate point of p along $\left.c_{u}\right|_{[0, t]}$,
(ii) there exists $v \in T M_{p},|v|=1, v \neq u$ with $c_{u}(t)=c_{v}(t)$.

Conversely, if (i) or (ii) is satisfied for some $t \in(0, \infty)$, then $t_{u} \leq t$.
Solution. For a sequence $t_{i} \downarrow t_{u}$, let γ_{i} be a minimizing unit speed geodesic from p to $c_{u}\left(t_{i}\right)$ and define $v_{i}:=\gamma_{i}^{\prime}(0) \in S^{m-1} \subset T M_{p}$. By compactness of S^{m-1}, we may assume that $v_{i} \rightarrow v$. By continuity, we get that c_{v} is a minimizing geodesic from p to $c_{u}\left(t_{u}\right)$.
If $v \neq u$, we have assertion (ii).

If $u=v$, we will show that (i) holds. As $c_{u}=c_{v}$ is minimizing up to $c_{u}\left(t_{u}\right)$, there are no conjugate points on $\left.c_{u}\right|_{\left[0, t_{u}\right]}$ before $c_{u}\left(t_{u}\right)$. By Lemma 3.11 it suffices to show that $d \exp _{p}$ is singular at $t_{u} u$. If not, then there is some neighborhood U of $t_{u} u$ where $\exp _{p}$ is a diffeomorphism. By the definition of $\gamma_{i}=c_{v_{i}}$, we have $c_{u}\left(t_{i}\right)=c_{v_{i}}\left(t_{i}^{\prime}\right)$ for $t_{i}^{\prime} \leq t_{i}$. For i large enough, it holds that $t_{i} u, t_{i}^{\prime} v_{i} \in U$. Then

$$
\exp _{p}\left(t_{i} u\right)=c_{u}\left(t_{i}\right)=c_{v_{i}}\left(t_{i}^{\prime}\right)=\exp _{p}\left(t_{i}^{\prime} v_{i}\right)
$$

and therefore $t_{i} u=t_{i}^{\prime} v_{i}$ and $u=v_{i}$, which contradicts the definition of t_{u}.
Conversely, if (i) holds for some t_{0}, then $t_{u} \leq t_{0}$ since a geodesic does not minimize distance after the first conjugate point.

Suppose now that (ii) holds. Let U be a uniquely geodesic neighborhood of $c_{u}\left(t_{0}\right)=c_{v}\left(t_{0}\right)$, take $\varepsilon>0$ such that $c_{u}\left(t_{0}+\varepsilon\right), c_{v}\left(t_{0}-\varepsilon\right) \in U$ and let σ be the unique geodesic from $c_{v}\left(t_{0}-\varepsilon\right)$ to $c_{u}\left(t_{0}+\varepsilon\right)$. Then either $L(\sigma)<2 \varepsilon$, and then then $\left.c_{v}\right|_{\left[0, t_{0}-\varepsilon\right]} \cup \sigma$ is a path from p to $c_{u}\left(t_{0}+\varepsilon\right)$ which is strictly shorter that $\left.c_{u}\right|_{\left[0, t_{0}+\epsilon\right]}$ and therefore $t_{u} \leq t_{0}+\varepsilon$. Or $L(\sigma)=2 \varepsilon$, but then $c_{u}\left(t_{0}+\varepsilon\right)=c_{v}\left(t_{0}-\varepsilon\right)$ and if $\left.c\right|_{\left[0, t_{0}+\varepsilon\right]}$ were minimizing we would have

$$
t_{0}+\varepsilon=L\left(\left.c\right|_{\left[0, t_{0}+\varepsilon\right]}\right) \leq L\left(\left.\gamma\right|_{\left[0, t_{0}-\varepsilon\right]}\right)=t_{0}-\varepsilon
$$

a contradiction. Thus $t_{u} \leq t_{0}+\varepsilon$, and as this holds for all ε small enough the result follows.

