Solutions 2

1. Basic properties of the Lie bracket

Let M be a smooth manifold, X, Y and Z belong to $\Gamma(T M)$, and f, g belong to $C^{\infty}(M)$
a) Show that the Lie bracket $[\cdot, \cdot]$ is bilinear and satisfies:

- $[Y, X]=-[X, Y]$
- $[f X, g Y]=f g[X, Y]+f X(g) Y-g Y(f) X$
- $[X,[Y, Z]]+[Y,[Z, X]+[Z,[X, Y]]=0$
b) Show that in a chart (φ, U), if $X=\sum X^{i} \frac{\partial}{\partial \varphi^{i}}$ and $Y=\sum Y^{j} \frac{\partial}{\partial \varphi^{j}}$, we have

$$
\left.[X, Y]\right|_{U}=\sum_{i}\left(\sum_{j} X^{j} \frac{\partial Y^{i}}{\partial \varphi^{j}}-Y^{j} \frac{\partial X^{i}}{\partial \varphi^{j}}\right) \frac{\partial}{\partial \varphi^{i}}
$$

Solution. a) Note first that $[X, Y]$ is characterised by how it acts on $C^{\infty}(M)$ functions, that is $[X, Y] f=X(Y(f))-Y(X(f))$ for all $f \in C^{\infty}(M)$. It is clear from this characterisation that $[\cdot, \cdot]$ is bilinear and antisymmetric. To see the other identities we note that, on the one hand, for all $h \in C^{\infty}(M)$ we have

$$
\begin{aligned}
{[f X, g Y](h) } & =f X(g Y(h))-g Y(f X(h)) \\
& =f X(g) Y(h)+f g X(Y(h))-g Y(f) X(h)-g f Y(X(h)) \\
& =(f g[X, Y]+f X(g) Y-g Y(f) X)(h)
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \left(\sum_{\text {cyclic }}[X,[Y, Z]]\right)(h)= \\
& =\sum_{\text {cyclic }}(X(Y(Z(h)))-X(Z(Y(h)))-Y(Z(X(h)))+Z(Y(X(h)))) \\
& =0 .
\end{aligned}
$$

b) As shown in the lecture, thanks to the commutation of second partial derivatives we have $\left[\frac{\partial}{\partial \varphi^{i}}, \frac{\partial}{\partial \varphi^{j}}\right]=0$ for all i, j. Hence using the properties shown

Prof. Dr. Joaquim Serra
in a)

$$
\begin{aligned}
{\left.[X, Y]\right|_{U} } & =\sum_{i, j}\left[X^{i} \frac{\partial}{\partial \varphi^{i}}, Y^{j} \frac{\partial}{\partial \varphi^{j}}\right] \\
& =\sum_{i, j}\left(X^{i} \frac{\partial Y^{j}}{\partial \varphi^{i}} \frac{\partial}{\partial \varphi^{j}}-Y^{j} \frac{\partial X^{i}}{\partial \varphi^{j}} \frac{\partial}{\partial \varphi^{i}}\right) \\
& =\sum_{i}\left(\sum_{j} X^{j} \frac{\partial Y^{i}}{\partial \varphi^{j}}-Y^{j} \frac{\partial X^{i}}{\partial \varphi^{j}}\right) \frac{\partial}{\partial \varphi^{i}} .
\end{aligned}
$$

2. The Levi-Civita connection on a submanifold

Let (\bar{M}, \bar{g}) be a Riemannian manifold with Levi-Civita connection \bar{D}, and let M be a submanifold of \bar{M}, equipped with the induced metric $g:=i^{*} \bar{g}$, where $i: M \rightarrow \bar{M}$ is the inclusion map.

Show that the Levi-Civita connection D of (M, g) satisfies $D_{X} Y=\left(\bar{D}_{X} Y\right)^{\mathrm{T}}$ for all $X, Y \in \Gamma(T M)$, where the superscript T denotes the component tangential to M and $\bar{D}_{X} Y$ is defined(!) as $\bar{D}_{X} Y:=\bar{D}_{\bar{X}} \bar{Y}$ for any extensions $\bar{X}, \bar{Y} \in \Gamma(T \bar{M})$ of X, Y.

Solution. As we have seen in the lecture (Remark 1.7), that $\left(\bar{D}_{\bar{X}} \bar{Y}\right)_{p}$ only depends on \bar{X}_{p} and $\bar{Y} \circ c$, where $c:(-\epsilon, \epsilon) \rightarrow \bar{M}$ is a curve with $\dot{c}(0)=\bar{X}$. Hence $\bar{D}_{X} Y$ is independent of the choice of the extensions \bar{X} and \bar{Y}.

Clearly, $\left(\bar{D}_{X} Y\right)^{\mathrm{T}}$ defines a linear connection. It remains to prove that this connection is compatible with g and torsion-free. For $X, Y, Z \in T M$, we have

$$
\begin{aligned}
Z g(X, Y) & =\bar{Z} \bar{g}(\bar{X}, \bar{Y})=\bar{g}\left(\bar{D}_{\bar{Z}} \bar{X}, \bar{Y}\right)+\bar{g}\left(\bar{X}, \bar{D}_{\bar{Z}} \bar{Y}\right) \\
& =\bar{g}\left(\left(\bar{D}_{Z} X\right)^{\mathrm{T}}, \bar{Y}\right)+\bar{g}\left(\bar{X},\left(\bar{D}_{Z} Y\right)^{\mathrm{T}}\right)=g\left(\left(\bar{D}_{Z} X\right)^{\mathrm{T}}, Y\right)+g\left(X,\left(\bar{D}_{Z} Y\right)^{\mathrm{T}}\right)
\end{aligned}
$$

and

$$
\left(\bar{D}_{X} Y\right)-\left(\bar{D}_{Y} X\right)=\left(\bar{D}_{\bar{X}} \bar{Y}\right)^{\mathrm{T}}-\left(\bar{D}_{\bar{Y}} \bar{X}\right)^{\mathrm{T}}=[\bar{X}, \bar{Y}]^{\mathrm{T}}=[X, Y] .
$$

Prof. Dr. Joaquim Serra

3. Gradient and Hessian form

Let (M, g) be a Riemannian manifold, D the Levi-Civita connection and $f: M \rightarrow \mathbb{R}$ a smooth function on M.
a) The gradient $\operatorname{grad} f \in \Gamma(T M)$ is defined by

$$
d f(X)=g(\operatorname{grad} f, X), \quad \forall X \in \Gamma(T M) .
$$

Compute grad f in local coordinates.
b) The Hessian form $\operatorname{Hess}(f) \in \Gamma\left(T_{0,2} M\right)$ is defined by

$$
\operatorname{Hess}(f)(X, Y)=g\left(D_{X} \operatorname{grad} f, Y\right), \quad \forall X, Y \in \Gamma(T M)
$$

Prove that $\operatorname{Hess}(f)$ is symmetric and compute $\operatorname{Hess}(f)$ in local coordinates.

Solution. a) For a chart (ϕ, U), let $A_{i}:=\frac{\partial}{\partial \phi^{i}}$ and $\operatorname{grad} f=\sum_{i} Y^{i} A_{i}$. Then we have

$$
\begin{aligned}
f_{j} & :=\frac{\partial}{\partial \phi^{j}}(f)=d f\left(A_{j}\right)=g\left(\operatorname{grad} f, A_{j}\right) \\
& =g\left(\sum_{i} Y^{i} A_{i}, A_{j}\right)=\sum_{i} Y^{i} g\left(A_{i}, A_{j}\right)=\sum_{i} Y^{i} g_{i j}
\end{aligned}
$$

Hence we get $Y^{i}=\sum_{j} f_{j} g^{j i}$ and thus grad $f=\sum_{i, j} g^{j i} f_{j} A_{i}$.
b) First, we use that D is compatible with g. We get

$$
\begin{aligned}
\operatorname{Hess}(f)(X, Y) & =g\left(D_{X} \operatorname{grad} f, Y\right)=X g(\operatorname{grad} f, Y)-g\left(\operatorname{grad} f, D_{X} Y\right) \\
& =X(Y(f))-\left(D_{X} Y\right)(f)
\end{aligned}
$$

Since the Levi-Civita connection D is torsion free, it follows

$$
\begin{aligned}
\operatorname{Hess}(f)(X, Y) & =X(Y(f))-\left(D_{X} Y\right)(f)+T(X, Y)(f) \\
& =Y(X(f))-\left(D_{Y} X\right)(f)=\operatorname{Hess}(f)(Y, X),
\end{aligned}
$$

i.e. $\operatorname{Hess}(f)$ is symmetric. Furthermore, we get in local coordinates

$$
\operatorname{Hess}(f)_{i j}=\operatorname{Hess}(f)\left(A_{i}, A_{j}\right)=A_{i}\left(A_{j}(f)\right)-\left(D_{A_{i}} A_{j}\right)(f)=f_{i j}-\sum_{k} \Gamma_{i j}^{k} f_{k} .
$$

