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Solutions 3

1. Motivation of the geodesic equation

Let (M, g) be a compact Riemannian manifold and c : [a, b]→ M a smooth
curve parametrised by the arc length. Suppose that c([a, b]) is covered by one
chart (φ, U). Construct m smooth variations γ` : (−ε, ε) × [a, b] → M such
that the associated variation vector fields along c , V`,0 :=

(
(γ`)∗

∂
∂s

)
(0, · ) ∈

Γ(c∗TM), satisfy that {V`,0(t)}1≤`≤m is a basis of TMc(t) for all t ∈ [a, b].
Deduce that any smooth length-minimising curve is a geodesic (from the
first variation of arc length [Theorem 1.15 in Prof. Lang’s notes]).

Solution. Define
γ` := φ−1(φ ◦ c+ se`),

where e` = ∂
∂x`

is the `-th vector of the standard basis of Rm. Then

V`,0(t) = d(φ−1)(φ◦c)(t)
(
e`)
)
.

Note that d(φ−1)(φ(p)(t)
(
e`)
)
is a basis of TMp for all p ∈ U (since φ is a chart).

Therefore, we constructed variations satisfying the desired properties. Using
the formula of the first variation of the arc length and minimality of c we
obtain, for any variation with associated vector field V0 vanishing at a and b:

0 = d
ds

∣∣
s=0

L(γs) = −
∫ b

a

〈V0(t), Ddtc
.
(t)〉dt.

Suppose now by contradiction that the (continuous) vector field D
dt
c
.
(t) along

c was not zero at some t0 ∈ (a, b). Then for some δ > 0 and ` ∈ 1, . . . ,m we
would have 〈V`,0(t), Ddtc

.
(t)〉 6= 0 (say > 0) for all t ∈ (t0 − δ, t0 + δ). Define

γ = φ−1(φ ◦ c+ sψ(t)e`),

where ψ ≥ 0 compactly supported in (t0− δ, t0 + δ) and not identically zero.
The associated variation vector field along c is

V0(t) = d(φ−1)(φ◦c)(t)
(
ψ(t)e`)

)
= ψ(t)d(φ−1)(φ◦c)(t)

(
e`)
)

= ψ(t)V0,`.

Hence we obtain

0 = −
∫ b

a

〈V0(t), Ddtc
.
(t)〉dt = −

∫ t0+δ

t0−δ
ψ〈V0`(t), Ddtc

.
(t)〉dt < 0;

a contradiction.
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2. Existence of closed geodesics

Let (M, g) be a compact Riemannian manifold and c0 : S1 →M a continuous
closed curve. The purpose of this exercise is to show that in the family of all
continuous and piece-wise C1 curves c : S1 →M which are homotopic to c0,
there is a shortest one and it is a geodesic.

a) Show that c0 is homotopic to a piece-wise C1-curve c1 with finite length.

b) Let L := infc L(c) be the infimum over all piece-wise C1 curves c : S1 →
M homotopic to c0 and consider a minimizing sequence (cn : S1 →M)n
with limn L(cn) = L. Use compactness of M to construct a piece-wise
C1-curve c : S1 →M with length L.

Hint. Cover M with simply connected balls with the property that
every two points in a ball are joined by a unique distance minimizing
geodesic.

c) Conclude by showing that c is homotopic to c0 and a geodesic.

Solution. a) Let us first prove that c0 is homotopic to a piece-wise C1-curve
c1. To this aim, we split c0 into finitely many paths γi : [0, 1]→M such that
γi(1) = γi+1(0), γn(1) = γ1(0) and γi is contained in a charts {(φi, Ui)}ni=1

with Ui simply-connected. Then γi is homotopic (relative to the endpoints)
to a C1-curve γ̃i and by connecting the γ̃i’s we get a piece-wise C1-curve c1
which is homotopic to c0. Then c1 has finite length L(c1).

b) Let L := infc L(c) < ∞ be the infimum over all curves c : S1 → M
which are piece-wise C1 and homotopic to c0 and consider a minimizing
sequence, i.e. a sequence (cn : S1 →M)n∈N with limn→∞ L(cn) = L.

We may assume that the curves cn : [0, 1]→M are parametrized propor-
tional to arclength, i.e. L(cn|[a,b]) = |b− a| · L(cn).

As M is compact, there is some r > 0 and points qq, . . . , qn ∈ M such
that the balls B(q1, r), . . . , B(qn, r) cover M , for all q, q′ ∈ B(qi, 3r) there is
a unique distance minimizing geodesic joining q to q′ of length < 6r and the
balls B(qi, 6r) are simply connected.

Fix some N ∈ N such that 1
N
< r

L
and define tk := k

N
for k = 0, . . . , N .

Consider now the sequences (cn(tk))n∈N. By compactness of M , we may
assume (by possibly passing to subsequences) that cn(tk) → pk for each
k = 0, . . . , N . Therefore

d(pk, pk+1) ≤ lim sup
n→∞

d(cn(tk), cn(tk+1) ≤ lim sup
n→∞

1
N
L(cn) < r.
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Take q ∈ {q1, . . . , qn} such that pk ∈ B(q, r), then pk+1 ⊂ B(q, 3r) and
therefore we can define a continuous, piece-wise C1-curve c : [0, 1] → M by
concatenating the unique distance minimizing geodesics between pk and pk+1.

For the length of c we have

L(c) =
N−1∑
k=0

L
(
c|[tk,tk+1]

)
=

N−1∑
k=0

d(pk, pk+1) ≤ N lim sup
n→∞

1
N
L(cn) = L.

c) It remains to prove that c is homotopic to c0. Observe that for n large
enough, we have c([tk, tk+1]), cn([tk, tk+1]) ⊂ B(q, 3r).

Since B(q, 6r) is simply-connected there is a homotopy from cn|[ k
N
, k+1

N ] to
c|[ k

N
, k+1

N ] with the endpoints following the unique geodesics from cn(tk) to pk
and from cn(tk+1) to pk+1, respectively. Combining this homotopies, we get
a homotopy from cn to c.

Observe that c is locally length minimizing and hence is a geodesic.

3. Metric and Riemannian isometries

Let (M, g) and (M̄, ḡ) be two connected Riemannian manifolds with induced
distance functions d and d̄, respectively. Further, let f : (M,d) → (M̄, d̄) be
an isometry of metric spaces, i.e. f is surjective and for all p, p′ ∈M we have
d̄(f(p), f(p′)) = d(p, p′).

a) Prove that for every geodesic γ in M , γ̄ := f ◦ γ is a geodesic in N .

b) Let p ∈M . Define F : TMp → TM̄f(p) with

F (X) :=
d

dt

∣∣∣∣
t=0

f ◦ γX(t),

where γX is the geodesic with γX(0) = p and γ. (0) = X. Show that F
is surjective and satisfies F (cX) = cF (X) for all X ∈ TMp and c ∈ R.

c) Conclude that F is an isometry by proving ‖F (X)‖ = ‖X‖.

d) Prove that F is linear and conclude that f is smooth in a neighborhood
of p.

e) Prove that f is a diffeomorphism for which f ∗ḡ = g holds.

Solution. a) As the property of being a geodesic is local, we may assume that
both γ : [0, L] → M and f ◦ γ : [0, L] → M̄ are contained in an open set
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U ⊂M and Ū ⊂ M̄ , respectively, such that points in U and Ū are connected
by a unique distance minimizing geodesic. Then there is a unique geodesic β
from γ̄(0) to γ̄(L). We claim that γ̄ and β coincide.

In the following all geodesics are parametrized by arclength. For t ∈
[0, L] there are geodesics β1 from γ̄(0) to γ̄(t) and β2 from γ̄(t) to γ̄(L).
Concatenating β1 and β2, we get some piece-wise C1-curve from γ̄(0) to γ̄(L)
with length

L(β1β2) = L(β1) + L(β2)

= d̄(γ̄(0), γ̄(t)) + d̄(γ̄(t), γ̄(L))

= d(γ(0), γ(t)) + d(γ(t), γ(L))

= d(γ(0), γ(L)) = d̄(γ̄(0), γ̄(L)) = L(β).

Hence, by uniqueness of the geodesic from γ̄(0) to γ̄(L), β1β2 and β coincide,
i.e. γ̄(t) = β(t).

b) Observe that f is bijective and its inverse f−1 is also is an isometry of
metric spaces.

First, we prove that F is surjective. Let Y ∈ TM̄f(p) and γ̄ the geodesic
through f(p) with γ̄

.
(0) = Y . Then Y = F (X) for X := d

dt

∣∣
t=0

f−1 ◦ γ̄(t).
From γcX(t) = γX(ct) it follows that

F (cX) =
d

dt

∣∣∣∣
t=0

f ◦ γX(ct) = cF (X).

c) For ε > 0 small enough, we have that γX(ε) and f ◦ γX(ε) are contained
in a normal neighborhood of p and f(p), respectively. Hence we get

ε‖X‖ = d(p, γX(ε)) = d̄(f(p), f ◦ γX(ε)) = ε‖F (X)‖.

We now claim that for X, Y ∈ TMp with ‖X‖ = ‖Y ‖ = 1 and α such that
cosα = gp(X, Y ) we have

sin
1

2
α = lim

s→0

1

2s
d(γX(s), γY (s)),

and a similar formula for X̄, Ȳ ∈ TM̄f (p) with ‖X̄‖ = ‖Ȳ ‖ = 1.
Assuming the claim for the moment, we now prove that

gp(X, Y ) = ḡf(p)(F (X), F (Y )).

for all X, Y ∈ TMp.
Note first that since F (cX) = cF (X), we can assume that ‖X‖ = ‖Y ‖ =

1, then also ‖F (X)‖ = ‖F (Y )‖ = 1. So by the claim and the fact that
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f is a distance preserving map we have for cosα = gp(X, Y ) and cosα′ =
ḡf(p)(F (X), F (Y ))

sin
1

2
α = sin

1

2
α′.

Therefore

gp(X, Y ) = cosα = 1− 2 sin2 1

2
α = 1− 2 sin2 1

2
α′ = ḡf(p)(F (X), F (Y )).

d)For all X, Y, Z ∈ TMp and c ∈ R, we have

ḡf(p)(F (X + cY ), F (Z)) = gp(X + cY, Z)

= gp(X,Z) + cgp(Y, Z)

= ḡf(p)(F (X), F (Z)) + cḡf(p)(F (Y ), F (Z))

= ḡf(p)(F (X) + cF (Y ), F (Z))

Hence F is linear and therefore smooth.
If Vp is a neighborhood of 0 ∈ TMp such that expp |Vp : Vp → Up is a

diffeomorphism, then we have

f |Up = expf(p) ◦F ◦ (expp |Vp)−1.

Hence f is smooth as well.
e) The argument above works for all p ∈M and also for f−1. Hence f is

a diffeomorphism. Furthermore, we have

dfp = d(expf(p) ◦F ◦ exp−1p ) = F

and thus

f ∗ḡp(Xp, Yp) = ḡf(p)(dfp(Xp), dfp(Yp)) = ḡf(p)(F (Xp), F (Yp)) = gp(Xp, Yp),

for all X, Y ∈ TM .

Proof of the claim (sketch). Let X, Y ∈ TMp with ‖X‖ = ‖Y ‖ = 1 and
let α = ^0(X, Y ), that is, cosα = gp(X, Y ). Consider normal coordinates
(ϕ,B(p, r)) around p, so that we have ϕ : B(p, r) → Br ⊂ Rn and define
cX := ϕ ◦ γX and cY := ϕ ◦ γY , two curves in Br.

On Br we can consider two different metrics. The Euclidean metric gE
and the pull-back metric h := (ϕ−1)∗g.

Note that h0(c′X(0), c′Y (0)) = gp(X, Y ) and by Lemma 1.19 h0 = (gE)0,
so (gE)0(c

′
X(0), c′Y (0)) = gp(X, Y ). We are now in a completely Euclidean

setting.
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Suppose by contradiction that lim sups→0
1
2s
d(γX(s), γY (s)) > sin 1

2
α and

take c > 1 such that

lim sup
s→0

1
2s
d(γX(s), γY (s)) > c sin 1

2
α.

Now, take r small enough such that c−1 · gE < h < c · gE on Br ⊂ Rn, and
therefore

c−1 · dE < dh < c · dE,

where dh denotes the distance function induced by the metric h. This implies
that for s small enough

1

2s
dE(cX(s), cY (s)) > c sin

1

2
α,

which is not true. The other inequality follows similarly.
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