D-MATH Prof Dr Ioaquim

Prof. Dr. Joaquim Serra

Solutions 3

1. Motivation of the geodesic equation

Let (M, g) be a compact Riemannian manifold and $c : [a, b] \to M$ a smooth curve parametrised by the arc length. Suppose that c([a, b]) is covered by one chart (ϕ, U) . Construct m smooth variations $\gamma_{\ell} : (-\epsilon, \epsilon) \times [a, b] \to M$ such that the associated variation vector fields along c, $V_{\ell,0} := ((\gamma_{\ell})_* \frac{\partial}{\partial s})(0, \cdot) \in$ $\Gamma(c^*TM)$, satisfy that $\{V_{\ell,0}(t)\}_{1 \le \ell \le m}$ is a basis of $TM_{c(t)}$ for all $t \in [a, b]$. Deduce that any smooth length-minimising curve is a geodesic (from the first variation of arc length [Theorem 1.15 in Prof. Lang's notes]).

Solution. Define

$$\gamma_{\ell} := \phi^{-1}(\phi \circ c + se_{\ell}),$$

where $e_{\ell} = \frac{\partial}{\partial x^{\ell}}$ is the ℓ -th vector of the standard basis of \mathbb{R}^m . Then

$$V_{\ell,0}(t) = d(\phi^{-1})_{(\phi \circ c)(t)} (e_{\ell}))$$

Note that $d(\phi^{-1})_{(\phi(p)(t)}(e_{\ell}))$ is a basis of TM_p for all $p \in U$ (since ϕ is a chart). Therefore, we constructed variations satisfying the desired properties. Using the formula of the first variation of the arc length and minimality of c we obtain, for any variation with associated vector field V_0 vanishing at a and b:

$$0 = \frac{d}{ds}\Big|_{s=0} L(\gamma_s) = -\int_a^b \langle V_0(t), \frac{D}{dt} \dot{c}(t) \rangle dt.$$

Suppose now by contradiction that the (continuous) vector field $\frac{D}{dt}\dot{c}(t)$ along c was not zero at some $t_0 \in (a, b)$. Then for some $\delta > 0$ and $\ell \in 1, \ldots, m$ we would have $\langle V_{\ell,0}(t), \frac{D}{dt}\dot{c}(t) \rangle \neq 0$ (say > 0) for all $t \in (t_0 - \delta, t_0 + \delta)$. Define

$$\gamma = \phi^{-1}(\phi \circ c + s\psi(t)e_{\ell}),$$

where $\psi \ge 0$ compactly supported in $(t_0 - \delta, t_0 + \delta)$ and not identically zero. The associated variation vector field along c is

$$V_0(t) = d(\phi^{-1})_{(\phi \circ c)(t)} (\psi(t)e_{\ell}) = \psi(t)d(\phi^{-1})_{(\phi \circ c)(t)} (e_{\ell}) = \psi(t)V_{0,\ell}.$$

Hence we obtain

$$0 = -\int_{a}^{b} \langle V_{0}(t), \frac{D}{dt}\dot{c}(t)\rangle dt = -\int_{t_{0}-\delta}^{t_{0}+\delta} \psi \langle V_{0\ell}(t), \frac{D}{dt}\dot{c}(t)\rangle dt < 0;$$

a contradiction.

D-MATH

Prof. Dr. Joaquim Serra

2. Existence of closed geodesics

Let (M, g) be a compact Riemannian manifold and $c_0: S^1 \to M$ a continuous closed curve. The purpose of this exercise is to show that in the family of all continuous and piece-wise C^1 curves $c: S^1 \to M$ which are homotopic to c_0 , there is a shortest one and it is a geodesic.

- a) Show that c_0 is homotopic to a piece-wise C^1 -curve c_1 with finite length.
- b) Let $L := \inf_c L(c)$ be the infimum over all piece-wise C^1 curves $c \colon S^1 \to M$ homotopic to c_0 and consider a minimizing sequence $(c_n \colon S^1 \to M)_n$ with $\lim_n L(c_n) = L$. Use compactness of M to construct a piece-wise C^1 -curve $c \colon S^1 \to M$ with length L.

Hint. Cover M with simply connected balls with the property that every two points in a ball are joined by a unique distance minimizing geodesic.

c) Conclude by showing that c is homotopic to c_0 and a geodesic.

Solution. a) Let us first prove that c_0 is homotopic to a piece-wise C^1 -curve c_1 . To this aim, we split c_0 into finitely many paths $\gamma_i \colon [0,1] \to M$ such that $\gamma_i(1) = \gamma_{i+1}(0), \ \gamma_n(1) = \gamma_1(0)$ and γ_i is contained in a charts $\{(\phi_i, U_i)\}_{i=1}^n$ with U_i simply-connected. Then γ_i is homotopic (relative to the endpoints) to a C^1 -curve $\widetilde{\gamma}_i$ and by connecting the $\widetilde{\gamma}_i$'s we get a piece-wise C^1 -curve c_1 which is homotopic to c_0 . Then c_1 has finite length $L(c_1)$.

b) Let $L := \inf_c L(c) < \infty$ be the infimum over all curves $c: S^1 \to M$ which are piece-wise C^1 and homotopic to c_0 and consider a minimizing sequence, i.e. a sequence $(c_n: S^1 \to M)_{n \in \mathbb{N}}$ with $\lim_{n \to \infty} L(c_n) = L$.

We may assume that the curves $c_n \colon [0,1] \to M$ are parametrized proportional to arclength, i.e. $L(c_n|_{[a,b]}) = |b-a| \cdot L(c_n)$.

As M is compact, there is some r > 0 and points $q_q, \ldots, q_n \in M$ such that the balls $B(q_1, r), \ldots, B(q_n, r)$ cover M, for all $q, q' \in B(q_i, 3r)$ there is a unique distance minimizing geodesic joining q to q' of length < 6r and the balls $B(q_i, 6r)$ are simply connected.

Fix some $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{r}{L}$ and define $t_k := \frac{k}{N}$ for $k = 0, \ldots, N$. Consider now the sequences $(c_n(t_k))_{n \in \mathbb{N}}$. By compactness of M, we may assume (by possibly passing to subsequences) that $c_n(t_k) \to p_k$ for each $k = 0, \ldots, N$. Therefore

$$d(p_k, p_{k+1}) \le \limsup_{n \to \infty} d(c_n(t_k), c_n(t_{k+1}) \le \limsup_{n \to \infty} \frac{1}{N} L(c_n) < r.$$

Differential Geometry II Prof. Dr. Joaquim Serra

Take $q \in \{q_1, \ldots, q_n\}$ such that $p_k \in B(q, r)$, then $p_{k+1} \subset B(q, 3r)$ and therefore we can define a continuous, piece-wise C^1 -curve $c: [0,1] \to M$ by concatenating the unique distance minimizing geodesics between p_k and p_{k+1} .

For the length of c we have

$$L(c) = \sum_{k=0}^{N-1} L\left(c|_{[t_k, t_{k+1}]}\right) = \sum_{k=0}^{N-1} d(p_k, p_{k+1}) \le N \limsup_{n \to \infty} \frac{1}{N} L(c_n) = L.$$

c) It remains to prove that c is homotopic to c_0 . Observe that for n large enough, we have $c([t_k, t_{k+1}]), c_n([t_k, t_{k+1}]) \subset B(q, 3r).$

Since B(q, 6r) is simply-connected there is a homotopy from $c_n|_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}$ to $c|_{\left[\frac{k}{N},\frac{k+1}{N}\right]}$ with the endpoints following the unique geodesics from $c_n(t_k)$ to p_k and from $c_n(t_{k+1})$ to p_{k+1} , respectively. Combining this homotopies, we get a homotopy from c_n to c.

Observe that c is locally length minimizing and hence is a geodesic.

3. Metric and Riemannian isometries

Let (M, g) and (M, \bar{g}) be two connected Riemannian manifolds with induced distance functions d and d, respectively. Further, let $f: (M, d) \to (M, d)$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p' \in M$ we have d(f(p), f(p')) = d(p, p').

- a) Prove that for every geodesic γ in M, $\bar{\gamma} := f \circ \gamma$ is a geodesic in N.
- b) Let $p \in M$. Define $F: TM_p \to T\overline{M}_{f(p)}$ with

$$F(X) := \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma_X(t),$$

where γ_X is the geodesic with $\gamma_X(0) = p$ and $\dot{\gamma}(0) = X$. Show that F is surjective and satisfies F(cX) = cF(X) for all $X \in TM_p$ and $c \in \mathbb{R}$.

- c) Conclude that F is an isometry by proving ||F(X)|| = ||X||.
- d) Prove that F is linear and conclude that f is smooth in a neighborhood of p.
- e) Prove that f is a diffeomorphism for which $f^*\bar{g} = g$ holds.

Solution. a) As the property of being a geodesic is local, we may assume that both $\gamma: [0, L] \to M$ and $f \circ \gamma: [0, L] \to M$ are contained in an open set D-MATH Differential Geometry II Prof. Dr. Joaquim Serra

 $U \subset M$ and $\overline{U} \subset \overline{M}$, respectively, such that points in U and \overline{U} are connected by a unique distance minimizing geodesic. Then there is a unique geodesic β from $\overline{\gamma}(0)$ to $\overline{\gamma}(L)$. We claim that $\overline{\gamma}$ and β coincide.

In the following all geodesics are parametrized by arclength. For $t \in [0, L]$ there are geodesics β_1 from $\bar{\gamma}(0)$ to $\bar{\gamma}(t)$ and β_2 from $\bar{\gamma}(t)$ to $\bar{\gamma}(L)$. Concatenating β_1 and β_2 , we get some piece-wise C^1 -curve from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$ with length

$$L(\beta_1\beta_2) = L(\beta_1) + L(\beta_2)$$

= $\overline{d}(\overline{\gamma}(0), \overline{\gamma}(t)) + \overline{d}(\overline{\gamma}(t), \overline{\gamma}(L))$
= $d(\gamma(0), \gamma(t)) + d(\gamma(t), \gamma(L))$
= $d(\gamma(0), \gamma(L)) = \overline{d}(\overline{\gamma}(0), \overline{\gamma}(L)) = L(\beta)$

Hence, by uniqueness of the geodesic from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$, $\beta_1\beta_2$ and β coincide, i.e. $\bar{\gamma}(t) = \beta(t)$.

b) Observe that f is bijective and its inverse f^{-1} is also is an isometry of metric spaces.

First, we prove that F is surjective. Let $Y \in T\overline{M}_{f(p)}$ and $\bar{\gamma}$ the geodesic through f(p) with $\dot{\bar{\gamma}}(0) = Y$. Then Y = F(X) for $X := \frac{d}{dt}\Big|_{t=0} f^{-1} \circ \bar{\gamma}(t)$.

From $\gamma_{cX}(t) = \gamma_X(ct)$ it follows that

$$F(cX) = \left. \frac{d}{dt} \right|_{t=0} f \circ \gamma_X(ct) = cF(X).$$

c) For $\epsilon > 0$ small enough, we have that $\gamma_X(\epsilon)$ and $f \circ \gamma_X(\epsilon)$ are contained in a normal neighborhood of p and f(p), respectively. Hence we get

$$\epsilon \|X\| = d(p, \gamma_X(\epsilon)) = \overline{d}(f(p), f \circ \gamma_X(\epsilon)) = \epsilon \|F(X)\|.$$

We now claim that for $X, Y \in TM_p$ with ||X|| = ||Y|| = 1 and α such that $\cos \alpha = g_p(X, Y)$ we have

$$\sin\frac{1}{2}\alpha = \lim_{s \to 0} \frac{1}{2s} d(\gamma_X(s), \gamma_Y(s)),$$

and a similar formula for $\bar{X}, \bar{Y} \in T\bar{M}_f(p)$ with $\|\bar{X}\| = \|\bar{Y}\| = 1$.

Assuming the claim for the moment, we now prove that

$$g_p(X,Y) = \bar{g}_{f(p)}(F(X),F(Y)).$$

for all $X, Y \in TM_p$.

Note first that since F(cX) = cF(X), we can assume that ||X|| = ||Y|| = 1, then also ||F(X)|| = ||F(Y)|| = 1. So by the claim and the fact that

D-MATH Differential Geometry II Prof. Dr. Joaquim Serra

f is a distance preserving map we have for $\cos\alpha=g_p(X,Y)$ and $\cos\alpha'=\bar{g}_{f(p)}(F(X),F(Y))$

$$\sin\frac{1}{2}\alpha = \sin\frac{1}{2}\alpha'.$$

Therefore

$$g_p(X,Y) = \cos \alpha = 1 - 2\sin^2 \frac{1}{2}\alpha = 1 - 2\sin^2 \frac{1}{2}\alpha' = \bar{g}_{f(p)}(F(X),F(Y)).$$

d)For all $X, Y, Z \in TM_p$ and $c \in \mathbb{R}$, we have

$$\bar{g}_{f(p)}(F(X+cY), F(Z)) = g_p(X+cY, Z) = g_p(X, Z) + cg_p(Y, Z) = \bar{g}_{f(p)}(F(X), F(Z)) + c\bar{g}_{f(p)}(F(Y), F(Z)) = \bar{g}_{f(p)}(F(X) + cF(Y), F(Z))$$

Hence F is linear and therefore smooth.

If V_p is a neighborhood of $0 \in TM_p$ such that $\exp_p|_{V_p} \colon V_p \to U_p$ is a diffeomorphism, then we have

$$f|_{U_p} = \exp_{f(p)} \circ F \circ (\exp_p|_{V_p})^{-1}.$$

Hence f is smooth as well.

e) The argument above works for all $p \in M$ and also for f^{-1} . Hence f is a diffeomorphism. Furthermore, we have

$$df_p = d(\exp_{f(p)} \circ F \circ \exp_p^{-1}) = F$$

and thus

$$f^*\bar{g}_p(X_p, Y_p) = \bar{g}_{f(p)}(df_p(X_p), df_p(Y_p)) = \bar{g}_{f(p)}(F(X_p), F(Y_p)) = g_p(X_p, Y_p),$$

for all $X, Y \in TM$.

Proof of the claim (sketch). Let $X, Y \in TM_p$ with ||X|| = ||Y|| = 1 and let $\alpha = \triangleleft_0(X, Y)$, that is, $\cos \alpha = g_p(X, Y)$. Consider normal coordinates $(\varphi, B(p, r))$ around p, so that we have $\varphi \colon B(p, r) \to B_r \subset \mathbb{R}^n$ and define $c_X \coloneqq \varphi \circ \gamma_X$ and $c_Y \coloneqq \varphi \circ \gamma_Y$, two curves in B_r .

On B_r we can consider two different metrics. The Euclidean metric g_E and the pull-back metric $h := (\varphi^{-1})^* g$.

Note that $h_0(c'_X(0), c'_Y(0)) = g_p(X, Y)$ and by Lemma 1.19 $h_0 = (g_E)_0$, so $(g_E)_0(c'_X(0), c'_Y(0)) = g_p(X, Y)$. We are now in a completely Euclidean setting. D-MATH Differential Geometry II Prof. Dr. Joaquim Serra

Suppose by contradiction that $\limsup_{s\to 0} \frac{1}{2s} d(\gamma_X(s), \gamma_Y(s)) > \sin \frac{1}{2}\alpha$ and take c > 1 such that

$$\limsup_{s \to 0} \frac{1}{2s} d(\gamma_X(s), \gamma_Y(s)) > c \sin \frac{1}{2}\alpha.$$

Now, take r small enough such that $c^{-1} \cdot g_E < h < c \cdot g_E$ on $B_r \subset \mathbb{R}^n$, and therefore

$$c^{-1} \cdot d_E < d_h < c \cdot d_E,$$

where d_h denotes the distance function induced by the metric h. This implies that for s small enough

$$\frac{1}{2s}d_E(c_X(s), c_Y(s)) > c\sin\frac{1}{2}\alpha,$$

which is not true. The other inequality follows similarly.