Solutions 3

1. Motivation of the geodesic equation

Let (M, g) be a compact Riemannian manifold and $c:[a, b] \rightarrow M$ a smooth curve parametrised by the arc length. Suppose that $c([a, b])$ is covered by one chart (ϕ, U). Construct m smooth variations $\gamma_{\ell}:(-\epsilon, \epsilon) \times[a, b] \rightarrow M$ such that the associated variation vector fields along $c, V_{\ell, 0}:=\left(\left(\gamma_{\ell}\right) * \frac{\partial}{\partial s}\right)(0, \cdot) \in$ $\Gamma\left(c^{*} T M\right)$, satisfy that $\left\{V_{\ell, 0}(t)\right\}_{1 \leq \ell \leq m}$ is a basis of $T M_{c(t)}$ for all $t \in[a, b]$. Deduce that any smooth length-minimising curve is a geodesic (from the first variation of arc length [Theorem 1.15 in Prof. Lang's notes]).

Solution. Define

$$
\gamma_{\ell}:=\phi^{-1}\left(\phi \circ c+s e_{\ell}\right),
$$

where $e_{\ell}=\frac{\partial}{\partial x^{\ell}}$ is the ℓ-th vector of the standard basis of \mathbb{R}^{m}. Then

$$
\left.V_{\ell, 0}(t)=d\left(\phi^{-1}\right)_{(\phi \circ c)(t)}\left(e_{\ell}\right)\right) .
$$

Note that $\left.d\left(\phi^{-1}\right)_{(\phi(p)(t)}\left(e_{\ell}\right)\right)$ is a basis of $T M_{p}$ for all $p \in U$ (since ϕ is a chart). Therefore, we constructed variations satisfying the desired properties. Using the formula of the first variation of the arc length and minimality of c we obtain, for any variation with associated vector field V_{0} vanishing at a and b :

$$
0=\left.\frac{d}{d s}\right|_{s=0} L\left(\gamma_{s}\right)=-\int_{a}^{b}\left\langle V_{0}(t), \frac{D}{d t} \dot{c}(t)\right\rangle d t .
$$

Suppose now by contradiction that the (continuous) vector field $\frac{D}{d t} \dot{c}(t)$ along c was not zero at some $t_{0} \in(a, b)$. Then for some $\delta>0$ and $\ell \in 1, \ldots, m$ we would have $\left\langle V_{\ell, 0}(t), \frac{D}{d t} \dot{c}(t)\right\rangle \neq 0$ (say $\left.>0\right)$ for all $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$. Define

$$
\gamma=\phi^{-1}\left(\phi \circ c+s \psi(t) e_{\ell}\right),
$$

where $\psi \geq 0$ compactly supported in $\left(t_{0}-\delta, t_{0}+\delta\right)$ and not identically zero. The associated variation vector field along c is

$$
\left.\left.V_{0}(t)=d\left(\phi^{-1}\right)_{(\phi o c)(t)}\left(\psi(t) e_{\ell}\right)\right)=\psi(t) d\left(\phi^{-1}\right)_{(\phi o c)(t)}\left(e_{\ell}\right)\right)=\psi(t) V_{0, \ell} .
$$

Hence we obtain

$$
0=-\int_{a}^{b}\left\langle V_{0}(t), \frac{D}{d t} \dot{c}(t)\right\rangle d t=-\int_{t_{0}-\delta}^{t_{0}+\delta} \psi\left\langle V_{0_{\ell}}(t), \frac{D}{d t} \dot{c}(t)\right\rangle d t<0 ;
$$

a contradiction.

Prof. Dr. Joaquim Serra

2. Existence of closed geodesics

Let (M, g) be a compact Riemannian manifold and $c_{0}: S^{1} \rightarrow M$ a continuous closed curve. The purpose of this exercise is to show that in the family of all continuous and piece-wise C^{1} curves $c: S^{1} \rightarrow M$ which are homotopic to c_{0}, there is a shortest one and it is a geodesic.
a) Show that c_{0} is homotopic to a piece-wise C^{1}-curve c_{1} with finite length.
b) Let $L:=\inf _{c} L(c)$ be the infimum over all piece-wise C^{1} curves $c: S^{1} \rightarrow$ M homotopic to c_{0} and consider a minimizing sequence $\left(c_{n}: S^{1} \rightarrow M\right)_{n}$ with $\lim _{n} L\left(c_{n}\right)=L$. Use compactness of M to construct a piece-wise C^{1}-curve $c: S^{1} \rightarrow M$ with length L.
Hint. Cover M with simply connected balls with the property that every two points in a ball are joined by a unique distance minimizing geodesic.
c) Conclude by showing that c is homotopic to c_{0} and a geodesic.

Solution. a) Let us first prove that c_{0} is homotopic to a piece-wise C^{1}-curve c_{1}. To this aim, we split c_{0} into finitely many paths $\gamma_{i}:[0,1] \rightarrow M$ such that $\gamma_{i}(1)=\gamma_{i+1}(0), \gamma_{n}(1)=\gamma_{1}(0)$ and γ_{i} is contained in a charts $\left\{\left(\phi_{i}, U_{i}\right)\right\}_{i=1}^{n}$ with U_{i} simply-connected. Then γ_{i} is homotopic (relative to the endpoints) to a C^{1}-curve $\widetilde{\gamma}_{i}$ and by connecting the $\widetilde{\gamma}_{i}$'s we get a piece-wise C^{1}-curve c_{1} which is homotopic to c_{0}. Then c_{1} has finite length $L\left(c_{1}\right)$.
b) Let $L:=\inf _{c} L(c)<\infty$ be the infimum over all curves $c: S^{1} \rightarrow M$ which are piece-wise C^{1} and homotopic to c_{0} and consider a minimizing sequence, i.e. a sequence $\left(c_{n}: S^{1} \rightarrow M\right)_{n \in \mathbb{N}}$ with $\lim _{n \rightarrow \infty} L\left(c_{n}\right)=L$.

We may assume that the curves $c_{n}:[0,1] \rightarrow M$ are parametrized proportional to arclength, i.e. $L\left(\left.c_{n}\right|_{[a, b]}\right)=|b-a| \cdot L\left(c_{n}\right)$.

As M is compact, there is some $r>0$ and points $q_{q}, \ldots, q_{n} \in M$ such that the balls $B\left(q_{1}, r\right), \ldots, B\left(q_{n}, r\right)$ cover M, for all $q, q^{\prime} \in B\left(q_{i}, 3 r\right)$ there is a unique distance minimizing geodesic joining q to q^{\prime} of length $<6 r$ and the balls $B\left(q_{i}, 6 r\right)$ are simply connected.

Fix some $N \in \mathbb{N}$ such that $\frac{1}{N}<\frac{r}{L}$ and define $t_{k}:=\frac{k}{N}$ for $k=0, \ldots, N$. Consider now the sequences $\left(c_{n}\left(t_{k}\right)\right)_{n \in \mathbb{N}}$. By compactness of M, we may assume (by possibly passing to subsequences) that $c_{n}\left(t_{k}\right) \rightarrow p_{k}$ for each $k=0, \ldots, N$. Therefore

$$
d\left(p_{k}, p_{k+1}\right) \leq \limsup _{n \rightarrow \infty} d\left(c_{n}\left(t_{k}\right), c_{n}\left(t_{k+1}\right) \leq \limsup _{n \rightarrow \infty} \frac{1}{N} L\left(c_{n}\right)<r .\right.
$$

Prof. Dr. Joaquim Serra
Take $q \in\left\{q_{1}, \ldots, q_{n}\right\}$ such that $p_{k} \in B(q, r)$, then $p_{k+1} \subset B(q, 3 r)$ and therefore we can define a continuous, piece-wise C^{1}-curve $c:[0,1] \rightarrow M$ by concatenating the unique distance minimizing geodesics between p_{k} and p_{k+1}.

For the length of c we have

$$
L(c)=\sum_{k=0}^{N-1} L\left(\left.c\right|_{\left[t_{k}, t_{k+1}\right]}\right)=\sum_{k=0}^{N-1} d\left(p_{k}, p_{k+1}\right) \leq N \limsup _{n \rightarrow \infty} \frac{1}{N} L\left(c_{n}\right)=L .
$$

c) It remains to prove that c is homotopic to c_{0}. Observe that for n large enough, we have $c\left(\left[t_{k}, t_{k+1}\right]\right), c_{n}\left(\left[t_{k}, t_{k+1}\right]\right) \subset B(q, 3 r)$.

Since $B(q, 6 r)$ is simply-connected there is a homotopy from $\left.c_{n}\right|_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}$ to $c_{\left[\frac{k}{N}, \frac{k+1}{N}\right]}$ with the endpoints following the unique geodesics from $c_{n}\left(t_{k}\right)$ to p_{k} and from $c_{n}\left(t_{k+1}\right)$ to p_{k+1}, respectively. Combining this homotopies, we get a homotopy from c_{n} to c.

Observe that c is locally length minimizing and hence is a geodesic.

3. Metric and Riemannian isometries

Let (M, g) and (\bar{M}, \bar{g}) be two connected Riemannian manifolds with induced distance functions d and \bar{d}, respectively. Further, let $f:(M, d) \rightarrow(\bar{M}, \bar{d})$ be an isometry of metric spaces, i.e. f is surjective and for all $p, p^{\prime} \in M$ we have $\bar{d}\left(f(p), f\left(p^{\prime}\right)\right)=d\left(p, p^{\prime}\right)$.
a) Prove that for every geodesic γ in $M, \bar{\gamma}:=f \circ \gamma$ is a geodesic in N.
b) Let $p \in M$. Define $F: T M_{p} \rightarrow T \bar{M}_{f(p)}$ with

$$
F(X):=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma_{X}(t)
$$

where γ_{X} is the geodesic with $\gamma_{X}(0)=p$ and $\dot{\gamma}(0)=X$. Show that F is surjective and satisfies $F(c X)=c F(X)$ for all $X \in T M_{p}$ and $c \in \mathbb{R}$.
c) Conclude that F is an isometry by proving $\|F(X)\|=\|X\|$.
d) Prove that F is linear and conclude that f is smooth in a neighborhood of p.
e) Prove that f is a diffeomorphism for which $f^{*} \bar{g}=g$ holds.

Solution. a) As the property of being a geodesic is local, we may assume that both $\gamma:[0, L] \rightarrow M$ and $f \circ \gamma:[0, L] \rightarrow \bar{M}$ are contained in an open set

Prof. Dr. Joaquim Serra
$U \subset M$ and $\bar{U} \subset \bar{M}$, respectively, such that points in U and \bar{U} are connected by a unique distance minimizing geodesic. Then there is a unique geodesic β from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$. We claim that $\bar{\gamma}$ and β coincide.

In the following all geodesics are parametrized by arclength. For $t \in$ $[0, L]$ there are geodesics β_{1} from $\bar{\gamma}(0)$ to $\bar{\gamma}(t)$ and β_{2} from $\bar{\gamma}(t)$ to $\bar{\gamma}(L)$. Concatenating β_{1} and β_{2}, we get some piece-wise C^{1}-curve from $\bar{\gamma}(0)$ to $\bar{\gamma}(L)$ with length

$$
\begin{aligned}
L\left(\beta_{1} \beta_{2}\right) & =L\left(\beta_{1}\right)+L\left(\beta_{2}\right) \\
& =\bar{d}(\bar{\gamma}(0), \bar{\gamma}(t))+\bar{d}(\bar{\gamma}(t), \bar{\gamma}(L)) \\
& =d(\gamma(0), \gamma(t))+d(\gamma(t), \gamma(L)) \\
& =d(\gamma(0), \gamma(L))=\bar{d}(\bar{\gamma}(0), \bar{\gamma}(L))=L(\beta) .
\end{aligned}
$$

Hence, by uniqueness of the geodesic from $\bar{\gamma}(0)$ to $\bar{\gamma}(L), \beta_{1} \beta_{2}$ and β coincide, i.e. $\bar{\gamma}(t)=\beta(t)$.
b) Observe that f is bijective and its inverse f^{-1} is also is an isometry of metric spaces.

First, we prove that F is surjective. Let $Y \in T \bar{M}_{f(p)}$ and $\bar{\gamma}$ the geodesic through $f(p)$ with $\dot{\bar{\gamma}}(0)=Y$. Then $Y=F(X)$ for $X:=\left.\frac{d}{d t}\right|_{t=0} f^{-1} \circ \bar{\gamma}(t)$.

From $\gamma_{c X}(t)=\gamma_{X}(c t)$ it follows that

$$
F(c X)=\left.\frac{d}{d t}\right|_{t=0} f \circ \gamma_{X}(c t)=c F(X)
$$

c) For $\epsilon>0$ small enough, we have that $\gamma_{X}(\epsilon)$ and $f \circ \gamma_{X}(\epsilon)$ are contained in a normal neighborhood of p and $f(p)$, respectively. Hence we get

$$
\epsilon\|X\|=d\left(p, \gamma_{X}(\epsilon)\right)=\bar{d}\left(f(p), f \circ \gamma_{X}(\epsilon)\right)=\epsilon\|F(X)\| .
$$

We now claim that for $X, Y \in T M_{p}$ with $\|X\|=\|Y\|=1$ and α such that $\cos \alpha=g_{p}(X, Y)$ we have

$$
\sin \frac{1}{2} \alpha=\lim _{s \rightarrow 0} \frac{1}{2 s} d\left(\gamma_{X}(s), \gamma_{Y}(s)\right),
$$

and a similar formula for $\bar{X}, \bar{Y} \in T \bar{M}_{f}(p)$ with $\|\bar{X}\|=\|\bar{Y}\|=1$.
Assuming the claim for the moment, we now prove that

$$
g_{p}(X, Y)=\bar{g}_{f(p)}(F(X), F(Y)) .
$$

for all $X, Y \in T M_{p}$.
Note first that since $F(c X)=c F(X)$, we can assume that $\|X\|=\|Y\|=$ 1, then also $\|F(X)\|=\|F(Y)\|=1$. So by the claim and the fact that

Prof. Dr. Joaquim Serra
f is a distance preserving map we have for $\cos \alpha=g_{p}(X, Y)$ and $\cos \alpha^{\prime}=$ $\bar{g}_{f(p)}(F(X), F(Y))$

$$
\sin \frac{1}{2} \alpha=\sin \frac{1}{2} \alpha^{\prime} .
$$

Therefore

$$
g_{p}(X, Y)=\cos \alpha=1-2 \sin ^{2} \frac{1}{2} \alpha=1-2 \sin ^{2} \frac{1}{2} \alpha^{\prime}=\bar{g}_{f(p)}(F(X), F(Y)) .
$$

d)For all $X, Y, Z \in T M_{p}$ and $c \in \mathbb{R}$, we have

$$
\begin{aligned}
\bar{g}_{f(p)}(F(X+c Y), F(Z)) & =g_{p}(X+c Y, Z) \\
& =g_{p}(X, Z)+c g_{p}(Y, Z) \\
& =\bar{g}_{f(p)}(F(X), F(Z))+c \bar{g}_{f(p)}(F(Y), F(Z)) \\
& =\bar{g}_{f(p)}(F(X)+c F(Y), F(Z))
\end{aligned}
$$

Hence F is linear and therefore smooth.
If V_{p} is a neighborhood of $0 \in T M_{p}$ such that $\left.\exp _{p}\right|_{V_{p}}: V_{p} \rightarrow U_{p}$ is a diffeomorphism, then we have

$$
\left.f\right|_{U_{p}}=\exp _{f(p)} \circ F \circ\left(\left.\exp _{p}\right|_{V_{p}}\right)^{-1} .
$$

Hence f is smooth as well.
e) The argument above works for all $p \in M$ and also for f^{-1}. Hence f is a diffeomorphism. Furthermore, we have

$$
d f_{p}=d\left(\exp _{f(p)} \circ F \circ \exp _{p}^{-1}\right)=F
$$

and thus

$$
f^{*} \bar{g}_{p}\left(X_{p}, Y_{p}\right)=\bar{g}_{f(p)}\left(d f_{p}\left(X_{p}\right), d f_{p}\left(Y_{p}\right)\right)=\bar{g}_{f(p)}\left(F\left(X_{p}\right), F\left(Y_{p}\right)\right)=g_{p}\left(X_{p}, Y_{p}\right),
$$

for all $X, Y \in T M$.
Proof of the claim (sketch). Let $X, Y \in T M_{p}$ with $\|X\|=\|Y\|=1$ and let $\alpha=\varangle_{0}(X, Y)$, that is, $\cos \alpha=g_{p}(X, Y)$. Consider normal coordinates $(\varphi, B(p, r))$ around p, so that we have $\varphi: B(p, r) \rightarrow B_{r} \subset \mathbb{R}^{n}$ and define $c_{X}:=\varphi \circ \gamma_{X}$ and $c_{Y}:=\varphi \circ \gamma_{Y}$, two curves in B_{r}.

On B_{r} we can consider two different metrics. The Euclidean metric g_{E} and the pull-back metric $h:=\left(\varphi^{-1}\right)^{*} g$.

Note that $h_{0}\left(c_{X}^{\prime}(0), c_{Y}^{\prime}(0)\right)=g_{p}(X, Y)$ and by Lemma $1.19 h_{0}=\left(g_{E}\right)_{0}$, so $\left(g_{E}\right)_{0}\left(c_{X}^{\prime}(0), c_{Y}^{\prime}(0)\right)=g_{p}(X, Y)$. We are now in a completely Euclidean setting.

Prof. Dr. Joaquim Serra
Suppose by contradiction that $\lim \sup _{s \rightarrow 0} \frac{1}{2 s} d\left(\gamma_{X}(s), \gamma_{Y}(s)\right)>\sin \frac{1}{2} \alpha$ and take $c>1$ such that

$$
\limsup _{s \rightarrow 0} \frac{1}{2 s} d\left(\gamma_{X}(s), \gamma_{Y}(s)\right)>c \sin \frac{1}{2} \alpha .
$$

Now, take r small enough such that $c^{-1} \cdot g_{E}<h<c \cdot g_{E}$ on $B_{r} \subset \mathbb{R}^{n}$, and therefore

$$
c^{-1} \cdot d_{E}<d_{h}<c \cdot d_{E}
$$

where d_{h} denotes the distance function induced by the metric h. This implies that for s small enough

$$
\frac{1}{2 s} d_{E}\left(c_{X}(s), c_{Y}(s)\right)>c \sin \frac{1}{2} \alpha,
$$

which is not true. The other inequality follows similarly.

