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Solutions 3

1. Motivation of the geodesic equation

Let (M, g) be a compact Riemannian manifold and ¢ : [a,b] — M a smooth
curve parametrised by the arc length. Suppose that ¢([a, b]) is covered by one
chart (¢, U). Construct m smooth variations 7, : (—¢,€) x [a,b] — M such
that the associated variation vector fields along ¢ , Vi := (7)) (0, ) €
['(c*T'M), satisfy that {Vyo(t)}1<i<m is a basis of T M,y for all t € [a,b].
Deduce that any smooth length-minimising curve is a geodesic (from the
first variation of arc length [Theorem 1.15 in Prof. Lang’s notes|).

Solution. Define
Yo = ¢ g oc+ sey),

where e, = % is the ¢-th vector of the standard basis of R™. Then

Vio(t) = d(¢™) goer ) (e0))-

Note that d(¢™") () (€c)) is a basis of TM,, for all p € U (since ¢ is a chart).
Therefore, we constructed variations satisfying the desired properties. Using
the formula of the first variation of the arc length and minimality of ¢ we
obtain, for any variation with associated vector field V[ vanishing at a and b:

0= ], ) = = [ (a(0) Be(oyie

Suppose now by contradiction that the (continuous) vector field %é(t) along
¢ was not zero at some ty € (a,b). Then for some § >0 and £ € 1,...,m we
would have (Vio(t), 2é(t)) # 0 (say > 0) for all ¢ € (tg — 6, ¢y + §). Define

) dt
Y=0 (Poc+sp(t)er),

where ¢ > 0 compactly supported in (o — 0, %y + ¢) and not identically zero.
The associated variation vector field along c is

Vo(t) = d(¢™ ) ey (V(t)er)) = V()d(d™ ) goeyio) (€6)) = () Vo

Hence we obtain

to+0

0= / 0a(0) Bettdt == [ olVa, (o), Bttt < 0

to—

a contradiction.
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2. Existence of closed geodesics

Let (M, g) be a compact Riemannian manifold and ¢y: S* — M a continuous
closed curve. The purpose of this exercise is to show that in the family of all
continuous and piece-wise C! curves c: S — M which are homotopic to co,
there is a shortest one and it is a geodesic.

a) Show that ¢y is homotopic to a piece-wise C1-curve c; with finite length.

b) Let L := inf, L(c) be the infimum over all piece-wise C'! curves c: S —
M homotopic to ¢y and consider a minimizing sequence (c,,: S' — M),
with lim,, L(c,) = L. Use compactness of M to construct a piece-wise
Cl-curve c: S' — M with length L.

Hint. Cover M with simply connected balls with the property that
every two points in a ball are joined by a unique distance minimizing
geodesic.

¢) Conclude by showing that ¢ is homotopic to ¢y and a geodesic.

Solution. a) Let us first prove that ¢y is homotopic to a piece-wise C'-curve
c1. To this aim, we split ¢ into finitely many paths 7;: [0, 1] — M such that
(1) = %i+1(0), (1) = 71(0) and v; is contained in a charts {(¢;, U) }i_,
with U; simply-connected. Then ~; is homotopic (relative to the endpoints)
to a Cl-curve 7; and by connecting the ¥;’s we get a piece-wise C'-curve ¢,
which is homotopic to ¢g. Then ¢; has finite length L(cq).

b) Let L := inf.L(c) < oo be the infimum over all curves c: S' — M
which are piece-wise C! and homotopic to ¢y and consider a minimizing
sequence, i.e. a sequence (c,: S* — M),en with lim,, o L(c,) = L.

We may assume that the curves ¢, : [0, 1] — M are parametrized propor-
tional to arclength, i.e. L(cp|ia) = |b— al - L(cy).

As M is compact, there is some r > 0 and points q,,...,¢q, € M such
that the balls B(q1,r),..., B(qn,r) cover M, for all ¢,q" € B(g;,3r) there is
a unique distance minimizing geodesic joining g to ¢’ of length < 6r and the
balls B(g;, 6r) are simply connected.

Fix some N € N such that % < 1 and define t; := % for k=0,...,N.
Consider now the sequences (¢, (tx))nen. By compactness of M, we may
assume (by possibly passing to subsequences) that c,(tx) — px for each
k=0,...,N. Therefore

d(pr, prs1) < limsup d(c,(t), cn(tiyr) < limsup 1 L(c,) <7

n—00 n—o0
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Take ¢ € {q,...,q,} such that p, € B(q,r), then prr1 C B(g,3r) and

therefore we can define a continuous, piece-wise C'-curve c: [0,1] — M by

concatenating the unique distance minimizing geodesics between py and pg. 1.
For the length of ¢ we have

N-1 N-1
L(c) = Z L (cligytpnn) = d(pk, pet1) < Nlimsup + L(c,) = L.
k=0 k=0 oo

¢) It remains to prove that ¢ is homotopic to ¢y. Observe that for n large
enough, we have c([tx, tx11]), cn([tr, ter1]) C B(q, 3r).
Since B(q, 6r) is simply-connected there is a homotopy from cn|[ k k1] to
N’ N

c][ k k1) with the endpoints following the unique geodesics from ¢, (tx) to p
N’ N

and from ¢, (tg41) to pri1, respectively. Combining this homotopies, we get
a homotopy from ¢, to c.
Observe that c is locally length minimizing and hence is a geodesic.

3. Metric and Riemannian isometries

Let (M, g) and (M, g) be two connected Riemannian manifolds with induced
distance functions d and d, respectively. Further, let f: (M,d) — (M,d) be
an isometry of metric spaces, i.e. f is surjective and for all p, p’ € M we have

d(f(p). f(¥)) = d(p,p').
a) Prove that for every geodesic v in M, 4 := f o~ is a geodesic in N.

b) Let p € M. Define F': T M, — T'M, with

d
F(X):= i _OfO’YX(t)>

where 7y is the geodesic with vx(0) = p and 4(0) = X. Show that F’
is surjective and satisfies F'(¢X) = c¢F'(X) for all X € TM,, and ¢ € R.

c¢) Conclude that F is an isometry by proving ||F(X)| = || X].

d) Prove that F is linear and conclude that f is smooth in a neighborhood
of p.

e) Prove that f is a diffeomorphism for which f*g = g holds.

Solution. a) As the property of being a geodesic is local, we may assume that
both ~v: [0,L] — M and fo~:[0,L] — M are contained in an open set

3
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U C M and U C M, respectively, such that points in U and U are connected
by a unique distance minimizing geodesic. Then there is a unique geodesic
from 4(0) to 4(L). We claim that 4 and 8 coincide.

In the following all geodesics are parametrized by arclength. For ¢ &
[0, L] there are geodesics f#; from (0) to 4(¢t) and Sy from ¥(t) to F(L).
Concatenating 3; and (3, we get some piece-wise C''-curve from 4(0) to J(L)
with length

= d(5(0),7(t)) + d(5(t), 7(L))
= d((0), (1)) + d(+(t), 7(L))
= d(v(0),7(L)) = d(7(0),%(L)) = L(p)

Hence, by uniqueness of the geodesic from 7(0) to 4(L), £152 and 5 coincide,
Le. y(t) = B(t).

b) Observe that f is bijective and its inverse f~! is also is an isometry of
metric spaces.

First, we prove that F is surjective. Let Y € TM 7(p) and 7 the geodesic
through f(p) with 4(0) =Y. Then Y = F(X) for X := %‘t:o ftox(t).

From 7.x(t) = yx(ct) it follows that

F(cX) = % _Of ovx(ct) = cF(X).

¢) For € > 0 small enough, we have that vx(¢) and f o yx(¢) are contained
in a normal neighborhood of p and f(p), respectively. Hence we get

e[| X1 = d(p,vx(€)) = d(f(p), f o yx(€)) = el F(X)]|

We now claim that for X,Y € TM, with ||X|| = ||Y]| = 1 and « such that
cosa = g,(X,Y) we have

! o1
sin éoz = Pg(l) %d(WX(S)ﬁY(S))v

and a similar formula for X, Y € TM;(p) with | X| = |V = 1.
Assuming the claim for the moment, we now prove that

9p(X,Y) = grp) (F(X), F(Y)).

for all X,Y € T'M,.
Note first that since F'(cX) = cF(X), we can assume that || X|| = [|Y]|| =
1, then also ||F(X)|| = ||F(Y)|| = 1. So by the claim and the fact that

4
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f is a distance preserving map we have for cosa = ¢,(X,Y) and cosa’ =

91 (F(X), F(Y)) 1 1
sin —a = sin -/,
2 2

Therefore
-2 1 -2 1 / —
9p(X,Y) =cosa =1—2sin J¥= 1 — 2sin J¥ = G (F(X), F(Y)).

d)For all XY, Z € TM, and ¢ € R, we have

Gip)(F(X +¢Y), F(Z)) = g,

X +cY,2)

9
— 4,(X.2) + cg, (Y, 2)

91 (F(X), F(2)) + cgro(F(Y), F(Z))
95 (F(X) + cF(Y), F(Z))

Hence F' is linear and therefore smooth.
If V, is a neighborhood of 0 € T'M, such that exp,|v,: V, — U, is a
diffeomorphism, then we have

flo, = exp () oF o (exp,, ]Vp)_l

Hence f is smooth as well.
e) The argument above works for all p € M and also for f~!. Hence f is
a diffeomorphism. Furthermore, we have

dfy = d(expy(, oF o exp, ) =F
and thus

g ( D p) = Gf@p (dfp( ) dfp( )) :gf(P)(F(Xp)vF(YZD)) :gp<Xp7YZD)
forall XY € TM.

Proof of the claim (sketch). Let XY € TM, with || X|| = ||Y|| = 1 and
let @ = <o(X,Y), that is, cosa = g,(X,Y’). Consider normal coordinates
(p, B(p,r)) around p, so that we have ¢: B(p,r) — B, C R" and define
cx = poyx and ¢y = ¢ oy, two curves in B,.

On B, we can consider two different metrics. The Euclidean metric gg
and the pull-back metric h := (¢~1)*g.

Note that ho(cx(0),¢(0)) = ¢,(X,Y) and by Lemma 1.19 hy = (gr)o,
0 (9r)o(cx(0),c(0)) = g,(X,Y). We are now in a completely Euclidean
setting.
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Suppose by contradiction that limsup,_, 5-d(yx(s), 7y (s)) > sin 3o and
take ¢ > 1 such that

lim sup 5-d(vx(s), 7y (s)) > csin 1o
s—0
Now, take r small enough such that ¢! - gp < h < ¢- gg on B, C R", and
therefore
C_l'dE<dh<C'dE,

where dj, denotes the distance function induced by the metric h. This implies
that for s small enough

1 1
2_SdE(CX(S)7CY(S)) > csin o a,

which is not true. The other inequality follows similarly. O



