D-MATH Differential Geometry II FS23
Prof. Dr. Joaquim Serra

Solutions 4

1. Applications of Hopf-Rinow

(a) Let (M,g) be a homogeneous Riemannian manifold, i.e. the isometry
group of M acts transitively on M. Prove that M is geodesically complete.

(b) Show that if (M, g) is a complete non-compact Riemannian manifold
then there exist a ray emanating from any given p € M, that is, a geodesic
¢ :]0,4+00) — M such that ¢,(0) = p and dist(p, ¢,(t)) =t for all £ > 0.

Solution. (a) Let p € M. Pick r > 0 such that exp, is defined on B(0,r) C
TM,. Let v € T,M be a tangent vector and let (a,,w,) be the maximal
interval, where the geodesic ¢, satisfying ¢,(0) = p and ¢,(0) = v is defined.
We need to show that (a,,w,) = (—o0,00). Suppose that w, < oo. Let
0 < e < r. Consider ¢ = ¢,(w, — €) € M. By assumption, there exists an
isometry ® of M such that ®(p) = ¢. Put w := D®_ ' (¢y(w, — €)) € T,M
and let ¢, be the associated geodesic. Then ® o ¢, is a geodesic starting at ¢
that extends ¢, to (a,,w, +r —¢€). This is a contradiction to the maximality
of w,. Hence w, = co. Similarly one shows «, = —o0.

This shows that exp,(tv) is defined on (—o0,00) and therefore M is geo-
desically complete.

(b) Let p € M. Pick r > 0 such that exp, is a diffeomorphism in a neighbor-

hod of on B(0,7) C TM,. Since M is complete and non-compact, there exist
a sequence py such that t, := dist(p, pr) — o0.

For all k let v, € TM, be a unit vector such that ¢, : [0,tx] = M
is a minimizing geodesic joining p and pi. (Such minimizing geodesic exists
by Hopf-Rinow). In particular dist(p,c,, (t)) = t for all ¢ € [0,t;]. Take a
partial subsequence vy — v. Then ¢, satisfies, by continuity of v — ¢,(t),
dist(p, ¢, (t)) =t for every t > 0.

Remark. By the Theorem of Hopf-Rinow this implies that M is complete.

2. Ricci curvature
Let (M, g) be a 3-dimensional Riemannian manifold. Show the following:

a) The Ricci curvature ric uniquely determines the Riemannian curvature
tensor R.

b) If M is an Einstein manifold, that is, a Riemannian manifold (M, g)
with ric = kg for some k£ € R, then the sectional curvature sec is
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constant.

Solution. a) In the following, let e, ez, e3 be an orthonormal basis of T'M,,.
First, note that R, = Rjri; = 0 by the symmetry properties of R.

We denote the components of ric by R;;. Then, for {i,7,k} = {1,2,3},
we have

Ri; = Rijii + Rjiji + Riins = Rijij + Rk,
Rij = Riiij + Rjijj + Ryirj = Rikjk
and therefore, we get
2Riji; = Ry + Rj; — Ry,
Rirjr = Ryj.

Observe now, that we can compute all other components of R by symmetry
properties. Hence R is uniquely determined by ric.

b) Let ey, e3 be a orthonormal basis of £ C T'M,, and choose e3 such that
e1, €2, eg is an orthonormal basis of T'M,,. Then we have

QSGCP<E) = 2R1212 = Rll + R22 - R33 =k + k—k=k

[STES

and hence sec,(F) =

3. Constant sectional curvature

Let (M,g) be a Riemannian manifold with constant sectional curvature
sec(E) =k € R for all E € Go(TM). Show that

R(X, Y)W =& (g(Y, W)X — g(X,W)Y).

Solution. As the sectional curvature is constant, we have
R(X,Y,X)Y) =k (9(X, X)g(Y,Y) — g(X,Y)g(X,Y))
for all X, Y € I'(T'M). Consider now the (0, 4)-tensor T given by
TV, W, X,Y) = r(g(V. X)g(Y, W) — g(V.Y)g(X, W)).
Then the (0,4)-tensor S := R — T has the following symmetry properties:
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2. S(VW, X,)Y)+S(V,Y, W, X))+ S(V,X,Y,W) =0,
3. S(V.W,X,Y) = S(X,Y,V,W),
4. S(X,Y, X,Y) =0.

The first three properties hold for R and 7', while the last one was already
observed above. Our goal is now to show that S = 0.
For all A, B,C,D € I'(T'M), we have by 3. and 4.

0=S(A4,B+D,A B+D)
= S(A,B,A,B) + S(A,B, A, D) + S(A, D, A, B) + S(A, D, A, D)
= 25(A, B, A, D)

and

0=SA+C,B,A+C,D)
(A,B,A,D)+ S(A,B,C,D)+ S(C,B,A, D)+ S(C,B,C, D)

S
S(A,B,C, D)+ S(A,D,C,B).

Finally, we get

— S(V,W,X,Y) + S(V,Y,W,X) + S(V,X,Y,W) =0,

for all VW, XY € I'(T'M).



