Solutions 4

1. Applications of Hopf-Rinow

(a) Let (M, g) be a homogeneous Riemannian manifold, i.e. the isometry group of M acts transitively on M. Prove that M is geodesically complete.
(b) Show that if (M, g) is a complete non-compact Riemannian manifold then there exist a ray emanating from any given $p \in M$, that is, a geodesic $c:[0,+\infty) \rightarrow M$ such that $c_{v}(0)=p$ and $\operatorname{dist}\left(p, c_{v}(t)\right)=t$ for all $t \geq 0$.

Solution. (a) Let $p \in M$. Pick $r>0$ such that $\exp _{p}$ is defined on $B(0, r) \subset$ $T M_{p}$. Let $v \in T_{p} M$ be a tangent vector and let $\left(\alpha_{v}, \omega_{v}\right)$ be the maximal interval, where the geodesic c_{v} satisfying $c_{v}(0)=p$ and $\dot{c}_{v}(0)=v$ is defined. We need to show that $\left(\alpha_{v}, \omega_{v}\right)=(-\infty, \infty)$. Suppose that $\omega_{v}<\infty$. Let $0<\epsilon<r$. Consider $q=c_{v}\left(\omega_{v}-\epsilon\right) \in M$. By assumption, there exists an isometry Φ of M such that $\Phi(p)=q$. Put $w:=D \Phi_{q}^{-1}\left(\dot{c}_{v}\left(\omega_{v}-\epsilon\right)\right) \in T_{p} M$ and let c_{w} be the associated geodesic. Then $\Phi \circ c_{w}$ is a geodesic starting at q that extends c_{v} to $\left(\alpha_{v}, \omega_{v}+r-\epsilon\right)$. This is a contradiction to the maximality of ω_{v}. Hence $\omega_{v}=\infty$. Similarly one shows $\alpha_{v}=-\infty$.

This shows that $\exp _{p}(t v)$ is defined on $(-\infty, \infty)$ and therefore M is geodesically complete.
(b) Let $p \in M$. Pick $r>0$ such that $\exp _{p}$ is a diffeomorphism in a neighborhod of on $\bar{B}(0, r) \subset T M_{p}$. Since M is complete and non-compact, there exist a sequence p_{k} such that $t_{k}:=\operatorname{dist}\left(p, p_{k}\right) \rightarrow \infty$.

For all k let $v_{k} \in T M_{p}$ be a unit vector such that $c_{v_{k}}:\left[0, t_{k}\right] \rightarrow M$ is a minimizing geodesic joining p and p_{k}. (Such minimizing geodesic exists by Hopf-Rinow). In particular $\operatorname{dist}\left(p, c_{v_{k}}(t)\right)=t$ for all $t \in\left[0, t_{k}\right]$. Take a partial subsequence $v_{k} \rightarrow v$. Then c_{v} satisfies, by continuity of $v \mapsto c_{v}(t)$, $\operatorname{dist}\left(p, c_{v}(t)\right)=t$ for every $t>0$.

Remark. By the Theorem of Hopf-Rinow this implies that M is complete.

2. Ricci curvature

Let (M, g) be a 3 -dimensional Riemannian manifold. Show the following:
a) The Ricci curvature ric uniquely determines the Riemannian curvature tensor R.
b) If M is an Einstein manifold, that is, a Riemannian manifold (M, g) with ric $=\mathrm{kg}$ for some $k \in \mathbb{R}$, then the sectional curvature sec is

Prof. Dr. Joaquim Serra
constant.

Solution. a) In the following, let e_{1}, e_{2}, e_{3} be an orthonormal basis of $T M_{p}$. First, note that $R_{i j k}=R_{j k i i}=0$ by the symmetry properties of R.

We denote the components of ric by $R_{i j}$. Then, for $\{i, j, k\}=\{1,2,3\}$, we have

$$
\begin{aligned}
R_{i i} & =R_{i i i i}+R_{j i j i}+R_{k i k i}=R_{i j i j}+R_{i k i k}, \\
R_{i j} & =R_{i i i j}+R_{j i j j}+R_{k i k j}=R_{i k j k}
\end{aligned}
$$

and therefore, we get

$$
\begin{aligned}
2 R_{i j i j} & =R_{i i}+R_{j j}-R_{k k}, \\
R_{i k j k} & =R_{i j} .
\end{aligned}
$$

Observe now, that we can compute all other components of R by symmetry properties. Hence R is uniquely determined by ric.
b) Let e_{1}, e_{2} be a orthonormal basis of $E \subset T M_{p}$ and choose e_{3} such that e_{1}, e_{2}, e_{3} is an orthonormal basis of $T M_{p}$. Then we have

$$
2 \sec _{p}(E)=2 R_{1212}=R_{11}+R_{22}-R_{33}=k+k-k=k
$$

and hence $\sec _{p}(E)=\frac{k}{2}$.

3. Constant sectional curvature

Let (M, g) be a Riemannian manifold with constant sectional curvature $\sec (E)=\kappa \in \mathbb{R}$ for all $E \in G_{2}(T M)$. Show that

$$
R(X, Y) W=\kappa(g(Y, W) X-g(X, W) Y)
$$

Solution. As the sectional curvature is constant, we have

$$
R(X, Y, X, Y)=\kappa(g(X, X) g(Y, Y)-g(X, Y) g(X, Y))
$$

for all $X, Y \in \Gamma(T M)$. Consider now the (0,4)-tensor T given by

$$
T(V, W, X, Y):=\kappa(g(V, X) g(Y, W)-g(V, Y) g(X, W)) .
$$

Then the (0,4)-tensor $S:=R-T$ has the following symmetry properties:

1. $S(V, W, X, Y)=-S(V, W, Y, X)$,

Prof. Dr. Joaquim Serra
2. $S(V, W, X, Y)+S(V, Y, W, X)+S(V, X, Y, W)=0$,
3. $S(V, W, X, Y)=S(X, Y, V, W)$,
4. $S(X, Y, X, Y)=0$.

The first three properties hold for R and T, while the last one was already observed above. Our goal is now to show that $S \equiv 0$.

For all $A, B, C, D \in \Gamma(T M)$, we have by 3 . and 4 .

$$
\begin{aligned}
0 & =S(A, B+D, A, B+D) \\
& =S(A, B, A, B)+S(A, B, A, D)+S(A, D, A, B)+S(A, D, A, D) \\
& =2 S(A, B, A, D)
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =S(A+C, B, A+C, D) \\
& =S(A, B, A, D)+S(A, B, C, D)+S(C, B, A, D)+S(C, B, C, D) \\
& =S(A, B, C, D)+S(A, D, C, B)
\end{aligned}
$$

Finally, we get

$$
\begin{aligned}
3 S(V, W, X, Y) & =S(V, W, X, Y)-S(V, Y, X, W)-S(V, W, Y, X) \\
& =S(V, W, X, Y)+S(V, Y, W, X)+S(V, X, Y, W)=0
\end{aligned}
$$

for all $V, W, X, Y \in \Gamma(T M)$.

