Prof. Dr. Joaquim Serra

Solutions 5

1. Divergence and Laplacian

Let (M, g) be a Riemannian manifold with Levi-Civita connection D. The divergence $\operatorname{div}(Y)$ of a vector field $Y \in \Gamma(T M)$ is the contraction of the (1, 1)-tensor field $D Y: X \mapsto D_{X} Y$ and the Laplacian $\Delta: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is defined by $\Delta f:=\operatorname{div}(\operatorname{grad} f)$. Show that:
a) $\operatorname{div}(f Y)=Y(f)+f \operatorname{div} Y$,
b) $\Delta(f g)=f \Delta g+g \Delta f+2\langle\operatorname{grad} f, \operatorname{grad} g\rangle$,
c) Compute Δf in local coordinates.

Solution. a) Let $p \in M$ and let e_{1}, \ldots, e_{n} be a orthonormal basis of $T M_{p}$. Then we have

$$
\begin{aligned}
\operatorname{div}_{p}(f Y) & =\sum_{i=1}^{n}\left\langle D_{e_{i}}(f Y), e_{i}\right\rangle \\
& =\sum_{i=1}^{n}\left\langle e_{i}(f) Y_{p}+f(p) D_{e_{i}} Y, e_{i}\right\rangle \\
& =\sum_{i=1}^{n} e_{i}(f)\left\langle Y_{p}, e_{i}\right\rangle+\sum_{i=1}^{n} f(p)\left\langle D_{e_{i}} Y, e_{i}\right\rangle \\
& =Y_{p}(f)+f(p) \operatorname{div}_{p}(Y) \\
& =(Y(f)+f \operatorname{div}(Y))(p)
\end{aligned}
$$

and hence $\operatorname{div}(f Y)=Y(f)+f \operatorname{div} Y$.
b) First, recall the definition of $\operatorname{grad} f$, i.e. $X(f)=\langle\operatorname{grad} f, X\rangle$ and note that

$$
\langle\operatorname{grad}(f g), X\rangle=X(f g)=X(f) g+f X(g)=\langle\operatorname{grad}(f) g+f \operatorname{grad}(g), X\rangle,
$$

for all $X \in \Gamma(M)$ and thus $\operatorname{grad}(f g)=\operatorname{grad}(f) g+f \operatorname{grad}(g)$.
Therefore, we get

$$
\begin{aligned}
\Delta(f g) & =\operatorname{div}(\operatorname{grad}(f g)) \\
& =\operatorname{div}(\operatorname{grad}(f) g+f \operatorname{grad}(g)) \\
& =\operatorname{div}(\operatorname{grad} f) g+\operatorname{grad}(f)(g)+f \operatorname{div}(\operatorname{grad}(g))+\operatorname{grad}(g)(f) \\
& =\Delta(f) g+f \Delta(g)+2\langle\operatorname{grad} f, \operatorname{grad} g\rangle .
\end{aligned}
$$

Prof. Dr. Joaquim Serra
c) In the following, we use Einstein notation. One can show that in local coordinates

$$
\begin{aligned}
\operatorname{grad} f & =g^{i k} f_{i} A_{k}, \\
D_{A_{i}} Y & =\left(A_{i}\left(Y^{k}\right)+Y^{j} \Gamma_{i j}^{k}\right) A_{k} .
\end{aligned}
$$

Therefore, we have

$$
\operatorname{div}(Y)=A_{k}\left(Y^{k}\right)+Y^{j} \Gamma_{k j}^{k} .
$$

Hence, we get

$$
\begin{aligned}
\Delta f & =\operatorname{div}(\operatorname{grad} f) \\
& =A_{k}\left(g^{i k} f_{i}\right)+g^{i j} f_{i} \Gamma_{k j}^{k} .
\end{aligned}
$$

With $G:=\operatorname{det}\left(g_{i j}\right)$, we can simplify this as follows. We have by the Jacobi formula and the chain rule

$$
\Gamma_{k j}^{k}=\frac{1}{2} g^{k l} A_{j}\left(g_{k l}\right)=\frac{1}{2 G} A_{j}(G)=\frac{1}{\sqrt{G}} A_{j}(\sqrt{G})
$$

and therefore

$$
\begin{aligned}
\Delta f & =A_{j}\left(g^{i j} f_{i}\right)+g^{i j} f_{i} \frac{1}{\sqrt{G}} A_{j}(\sqrt{G}) \\
& =\frac{1}{\sqrt{G}} A_{j}\left(\sqrt{G} g^{i j} f_{i}\right) .
\end{aligned}
$$

2. Codazzi equation

Let $M \subset \bar{M}$ be a submanifold of the Riemannian manifold (\bar{M}, \bar{g}). For the second fundamental form h of M, we define

$$
\left(D_{X}^{\perp} h\right)(Y, W):=\left(\bar{D}_{X}(h(Y, W))^{\perp}-h\left(D_{X} Y, W\right)-h\left(Y, D_{X} W\right),\right.
$$

where $W, X, Y \in \Gamma(T M)$. Show that the Codazzi equation

$$
(\bar{R}(X, Y) W)^{\perp}=\left(D_{X}^{\perp} h\right)(Y, W)-\left(D_{Y}^{\perp} h\right)(X, W)
$$

holds for all $W, X, Y \in \Gamma(T M)$.

Prof. Dr. Joaquim Serra
Solution. As $\bar{D}_{Z} W=D_{Z} W+h(Z, W)$ for $W, Z \in \Gamma(T M)$, we get

$$
\begin{aligned}
\bar{R}(X, Y) W= & \bar{D}_{X} \bar{D}_{Y} W-\bar{D}_{Y} \bar{D}_{X} W-\bar{D}_{[X, Y]} W \\
= & \bar{D}_{X}\left(D_{Y} W+h(Y, W)\right)-\bar{D}_{Y}\left(D_{X} W+h(X, W)\right) \\
& -\left(D_{[X, Y]} W+h([X, Y], W)\right) \\
= & D_{X} D_{Y} W+h\left(X, D_{Y} W\right)+\bar{D}_{X}(h(Y, W)) \\
& -D_{Y} D_{X} W-h\left(Y, D_{X} W\right)-\bar{D}_{Y}(h(X, W)) \\
& -D_{[X, Y]} W-h\left(D_{X} Y-D_{Y} X, W\right) \\
= & R(X, Y) W \\
& +\bar{D}_{X}(h(Y, W))-h\left(D_{X} Y, W\right)-h\left(Y, D_{X} W\right) \\
& -\bar{D}_{Y}(h(X, W))+h\left(D_{Y} X, W\right)+h\left(X, D_{Y} W\right) .
\end{aligned}
$$

Note that we used that D is torsion free, i.e. $[X, Y]=D_{X} Y-D_{Y} X$. Now, taking the normal part, we conclude that the Codazzi equation

$$
(\bar{R}(X, Y) W)^{\perp}=\left(D_{X}^{\perp} h\right)(Y, W)-\left(D_{Y}^{\perp} h\right)(X, W)
$$

holds.

3. Sectional curvature of submanifolds

Let (\bar{M}, \bar{g}) be a Riemannian manifold with sectional curvature sēc. Let $p \in \bar{M}$ and $L \subset T \bar{M}_{p}$ an m-dimensional linear subspace.
a) Prove that there is some $r>0$ such that for the open ball $B_{r}(0) \subset T \bar{M}_{p}$, the set $M:=\exp _{p}\left(L \cap B_{r}(0)\right)$ is an m-dimensional submanifold of \bar{M}.
b) Let g be the induced metric on M and let sec be the sectional curvature of M. Show that for $E \subset T M_{p}$, we have $\sec _{p}(E)=\sec _{p}(E)$ and if L is a 2-dimensional subspace, then $\sec \leq \operatorname{sē}$ on M.

Solution. a) First, we know that there is some $r>0$ such that the restriction of the exponential map to $B_{r}(0)$, i.e. $\left.\exp _{p}\right|_{B_{r}(0)}: B_{r}(0) \rightarrow \exp _{p}\left(B_{r}(0)\right)$, is a diffeomorphism. Furthermore, note that $L \cap B_{r}(0)$ is an m-dimensional submanifold of $B_{r}(0)$ and hence $M=\exp _{p}\left(L \cap B_{r}(0)\right)$ is an m-dimensional submanifold of $\exp _{p}\left(B_{r}(0)\right)$. Finally, as $\exp _{p}\left(B_{r}(0)\right)$ is open in \bar{M}, it follows that M is a submanifold of \bar{M} as well.
b) Let $u, v \in E$ be an orthonormal basis of $E \subset T M_{p}$. Then we have

$$
\begin{aligned}
\sec _{p}(E) & =R_{p}(u, v, u, v) \\
& =\bar{R}_{p}(u, v, u, v)+\bar{g}_{p}\left(h_{p}(u, u), h_{p}(v, v)\right)-\bar{g}_{p}\left(h_{p}(u, v), h_{p}(u, v)\right) \\
& =\sec _{p}(E)+\bar{g}_{p}\left(h_{p}(u, u), h_{p}(v, v)\right)-\bar{g}_{p}\left(h_{p}(u, v), h_{p}(u, v)\right)
\end{aligned}
$$

Prof. Dr. Joaquim Serra
We now prove that $h_{p}(u, u)=h_{p}(v, v)=h_{p}(u, v)=0$. Extend u, v to an orthonormal basis $e_{1}=u, e_{2}=v, e_{3}, \ldots, e_{\bar{m}}$ of $T \bar{M}_{p}$. Then this basis induces normal coordinates on \bar{M}. Hence, we have $\Gamma_{i j}^{k}(p)=0$ and thus $\left(\bar{D}_{e_{i}} e_{j}\right)_{p}=0$ for all i, j. In particular this implies that $h_{p}(u, u)=h_{p}(v, v)=h_{p}(u, v)=0$ as claimed.

Assume now that $L \subset T \bar{M}_{p}$ is 2-dimensional and let $q:=\exp _{p}(x) \in M$ for $x \in L \cap B_{r}(0)$. By the above, we may assume that $x \neq 0$.

Define $w:=\frac{x}{|x|} \in T M_{p}$ and let c_{w} be the unique geodesic with $c(0)=p$ and $\dot{c}(0)=w$. Then we have $q=c_{w}(|x|)$ and $u:=\dot{c}_{w}(|x|) \in T M_{q}$ with $|u|=1$. Furthermore, by Lemma 2.17, we get

$$
h_{q}(u, u)=\left(\left.\frac{\bar{D}}{d t} \dot{c}_{w}\right|_{t=|x|}\right)^{\perp}=0 .
$$

To compute the sectional curvature of $E=T M_{q}$, we extend u to an orthonormal basis u, v of E and get

$$
\sec _{q}(E)=R_{q}(u, v, u, v)=\bar{R}_{q}(u, v, u, v)-\left|h_{q}(u, v)\right|^{2} \leq \operatorname{sē}_{q}(E)
$$

as desired.

