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Solutions 6

1. Revisiting connections

(a) Fix some manifold M with a connection ∇. Take any (1, 2) tensor field
F and define

∇̃XY := ∇XY + F (X, Y ).

Show that

• ∇̃ is a connection

• For every connection ∇̂ on M there is a unique (1, 2) tensor F̂ such
that ∇̂−∇ = F̂ . Show that in local coordinates Γ̂kij−Γkij = F k

ij. Double
check that the difference of two Christoffel symbols indeed transforms
like a (1, 2) tensor field.

(b) Let ∇, ∇̃ be two connections on M and F (X, Y ) := ∇̃XY − ∇XY be
their difference. Show that ∇ and ∇̃ have the same geodesics if and only if
F is antisymmetric i.e., F (X, Y ) = −F (Y,X). Recall that a geodesic for ∇
is a self-parallel curve w.r.t. ∇, this translates in the ODE (with a harmless
abuse of notation) ∇γ. γ

.
= 0.

Conclude that if ∇ and ∇̃ have the same geodesics and the same torsion
then ∇ = ∇̃.

Solution. (a) The only non trivial thing to show is that ∇̃ satisfies the Leibniz
rule:

∇̃X(fY ) = f∇XY + (Xf)Y + F (X, fY )

= f∇̃XY + (Xf)Y.

Conversely we show that the map (X, Y ) 7→ ∇̂XY −∇XY is C∞ bilinear
in both arguments. In X is obvious, while in Y is the same computation
as above (the term (Xf)Y cancels). If one wants to see this in coordinates
remember that

(y)Γkij =
∂yk

∂x`
∂xp

∂yi
∂xq

∂yj
(x)Γ`pq +

∂yk

∂xm
∂2xm

∂yi∂yj
,

and notice that the “nontensorial” term does not depend on the connection,
so

(y)Γ̂kij − (y)Γkij =
∂yk

∂x`
∂xp

∂yi
∂xq

∂yj
((x)Γ̂`pq − (x)Γ

`

pq).
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In other words F̂ k
ij := Γ̂kij − Γkij transforms indeed like a (1, 2) tensor under

change of coordinates.

(b)In local coordinates γ. = γ
. k∂k, where γ

. k = dγk

dt
, so using the formula for

the covariant derivative (and γ..k := d2γk

dt2
) the geodesic ODE becomes:

0 = γ
..k + (Γkij ◦ γ)γ

. iγ
. j = γ

..k +
1

2
(Γkij ◦ γ + Γkji ◦ γ)γ

. iγ
. j,

where Γ are the Christoffles of ∇. Now, if F is antisymmetric we find

Γkij + Γkji = Γ̃kij + Γ̃kji, (1)

so the geodesics of ∇̃ and ∇ solve the same ODE.
Conversely if ∇̃ and ∇ share the same geodesics pick p ∈ M , v ∈ TpM

and a vector field X such that X(p) = v. Solving the geodesic equation we
find γ : (−ε, ε) → M such that γ(0) = p, γ

.
(0) = v and is self-parallel w.r.t.

∇̃ and ∇ , in particular evaluating at t = 0

0 = ∇vX = ∇̃vX.

So we find Fp(v, v) = (∇̃ − ∇)vX = 0, since Fp : TpM × TpM → TpM is
bilinear and v was arbitrary we find by polarization

2Fp(v, w) + 2Fp(w, v) = Fp(v + w, v + w)− Fp(v − w, v − w) = 0− 0 = 0.

Since p was arbitrary we find F is antisymmetric.
Recall that in local coordinates the torsion T of ∇ is given by T kij =

Γkij − Γkji. So combining this with (1) we find{
Γkij − Γkji = Γ̃kij − Γ̃kji
Γkij + Γkji = Γ̃kij + Γ̃kji

and the unique solution is Γkij = Γ̃kij.

2. Meaning of the torsion

Consider the manifold (R3, gEucl) endowed with the Levi-Civita connection
∇. Define another connection ∇̃ by

∇̃∂i∂j = εkij∂k (⇐⇒ Γ̃kij := εkij),

where εkij is the sign of the permutation (1, 2, 3) 7→ (i, j, k), and zero other-
wise.
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• Show that ∇̃ is a connection compatible with g, has the same geodesics
of ∇, but has non-vanishing torsion. Check that

(∇̃vX)p = (∇vX)p −Xp × v.

• Compute the parallel transport of v := (1, 0, 0) along γ(t) := (0, 0, t).
This should clarify where is the “torsion”.

• Show that, up to a multiplicative C∞(R3) function in the Christoffels,
∇̃ is the unique connection that is g-compatible and has the same
geodesics of ∇.

Solution. Notice that a connection is compatible only if its Christoffel symbols
satisfy

∂kgij = g`jΓ
`
ki + g`iΓ

`
kj, (2)

which in our case (∂kgij = ∂kδij = 0) becomes the identity

0 = εjki + εikj.

Writing the parallel transport equation for V (t) = V k(t)∂k ∈ Tγ(t)R3 we find

V
. k

+ εkijV
jγ
. i = V

. k
+ εk3jV

j = 0 for k = 1, 2, 3;

that becomes the ODE system
V
. 1 − V 2 = 0,

V
. 2

+ V 1 = 0,

V
. 3

= 0,

V (0) = (1, 0, 0)

whose solution is V (t) = (cos t,− sin t, 0) ∈ T(0,0,t)R3.
If ∇̃ is g-compatible (see (2)) and has the same geodesics of ∇ (so ∇−∇̃

is antisymmetric) one gets (the Christoffels of ∇ are identically zero in these
coordinates)

0 = Γ̃jki + Γ̃ikj = Γ̃kij + Γ̃kji for all {i, j, k} ⊆ {1, 2, 3}.

Now playing with the (anti)symmetries one gets

Γ̃pqp = Γ̃ppq = Γ̃qpp = 0 for all {p, q} ⊂ {1, 2, 3}.

So if two indices are the same Γ̃ vanish. When all the three indices are
different, instead, we can always move the indices around and find

Γ̃kij = sign(σ)Γ̃3
12 where σ(1) = i, σ(2) = j, σ(3) = k.

This means that Γ̃kij = αεkij for some α ∈ C∞(R3).
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3. The sphere

Use Gauss’ equations to prove that the sphere of radius r > 0,

Snr := {x ∈ Rn+1 : |x| = 1}

has constant sectional curvatures equal to 1/r2.

Solution. Let us denote 〈·, ·〉 the scalar product of Rn+1 and (in consistency
with the notation used in the lecture) let D̄ and D denote respectively the
Levy-Civita connections of M̄ = Rn+1 and of M = Snr (notice that D̄ is just
standard component-wise differentiation)

Define N : Rn+1 \ {0} → R as N(x) = x/r and note that N is a smooth
extension of a unit normal vector field to Sr. Clearly given any (smooth
extension of a) vector field Z ∈ Γ(TSr) we have

(D̄ZN)i = d
(
xi

r

)
(Z) = 1

r
Zi that is D̄ZN = 1

r
Z

We can then compute, for X, Y tangent vector fields to Sr

h(X, Y ) = (D̄XY )⊥ = 〈D̄XY,N〉N = −〈Y,DXN〉N =
−1

r
〈X, Y 〉N

Hence, using Gauss’ equations we obtain, for any pair of perpendicular
unit vectores e1, e2 ∈ TMx we have:

R(e1, e2, e1, e2) = R̄(e1, e2, e1, e2) + 〈h(e1, e1), h(e2, e2)〉 − 〈h(e1, e2), h(e1, e2)〉

= 0 +
1

r2
+ 0.

In other words all sectional curvatures are equal to 1/r2 as claimed.
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