D-MATH Differential Geometry II FS23
Prof. Dr. Joaquim Serra

Solutions 6

1. Revisiting connections

(a) Fix some manifold M with a connection V. Take any (1,2) tensor field
F and define B
Vil = ViV + F(X,Y).

Show that

e V is a connection

e For every connection V on M there is a unique (1,2) tensor I such
that V—V = F. Show that in local coordinates ffj — I}, = . Double
check that the difference of two Christoffel symbols indeed transforms
like a (1,2) tensor field.

(b) Let V,V be two connections on M and F(X,Y) := VxV — VxV be
their difference. Show that V and V have the same geodesics if and only if
F is antisymmetric i.e., F(X,Y) = —F (Y, X). Recall that a geodesic for V
is a self-parallel curve w.r.t. V, this translates in the ODE (with a harmless
abuse of notation) V54 = 0.

Conclude that if V and V have the same geodesics and the same torsion
then V = V.

Solution. (a) The only non trivial thing to show is that V satisfies the Leibniz
rule:

Vx(fY) = fVxY + (Xf)Y + F(X, fY)
= fVXY + (Xf)Y.

Conversely we show that the map (X,Y) — VxY — VY is C* bilinear
in both arguments. In X is obvious, while in Y is the same computation
as above (the term (X f)Y cancels). If one wants to see this in coordinates
remember that

wpe _ Oy 027 0at 1y Oy* O™
Yo 9zt Oyt Oy P Qo Qyldyd

and notice that the “nontensorial” term does not depend on the connection,
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In other words I := I'f; — I'¥; transforms indeed like a (1,2) tensor under
change of coordinates.

dry®
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the covariant derivative (and 4% := d;;k) the geodesic ODE becomes:

(b)In local coordinates 4 = 4*0, where A% = so using the formula for

0=4"+ (TG oMY = 4" + 5

where I' are the Christoffles of V. Now, if F' is antisymmetric we find

Iloy+T% o)y,

k k _ Tk | Tk
Ly +T =I5 +T (1)
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so the geodesics of V and V solve the same ODE.

Conversely if V and V share the same geodesics pick p € M, v € T,M
and a vector field X such that X (p) = v. Solving the geodesic equation we
find v: (—e,e) — M such that y(0) = p,%(0) = v and is self-parallel w.r.t.
V and V , in particular evaluating at t = 0

0=V,X =V,X.

So we find Fp(v,v) = (V = V),X = 0, since F,: T,M x T,M — T,M is
bilinear and v was arbitrary we find by polarization

2F,(v,w) + 2F,(w,v) = F(v+w,v+w) — F,(v —w,v —w) =0—-0=0.

Since p was arbitrary we find F' is antisymmetric.
Recall that in local coordinates the torsion 7' of V is given by Tllj =
¥, —I'%. So combining this with (I)) we find

i i =~ ~
{Iij_Iji_NIij_Iji
Tk Tk =T% Tk
ij Ji tj Ji

and the unique solution is I'}; = ff]

2. Meaning of the torsion

Consider the manifold (R?, gp.) endowed with the Levi-Civita connection
V. Define another connection V by

Vo0; = ebdy, (= Tk = eb),

k . . . . .
where g;; is the sign of the permutation (1,2,3) +— (4,7, k), and zero other-
wise.
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e Show that V is a connection compatible with g, has the same geodesics
of V, but has non-vanishing torsion. Check that
(VoX)p = (Vo X), — X, X v.

e Compute the parallel transport of v := (1,0,0) along ~(¢) := (0,0,¢).
This should clarify where is the “torsion”.

e Show that, up to a multiplicative C°°(R?) function in the Christoffels,
V is the unique connection that is g-compatible and has the same
geodesics of V.

Solution. Notice that a connection is compatible only if its Christoffel symbols
satisfy

hgij = 96Tk + 90l (2)
which in our case (0xg;; = Ord;; = 0) becomes the identity
= 5?%1- + 62]-.
Writing the parallel transport equation for V (t) = V*(t)d), € T, R* we find
v + 8%Vj"yi =V + 5’§jVj =0fork=1,23;
that becomes the ODE system

Vi—v2=o,
Vit vi=o,
V=0,

V(0) = (1,0,0)

whose solution is V(¢) = (cost, —sint, 0) € T(p0nR>.

If V is g-compatible (see ([2)) and has the same geodesics of V (so V — \%
is antisymmetric) one gets (the Christoffels of V are identically zero in these
coordinates)

0=T%, + T}, =T +T% for all {i,j,k} C {1,2,3}.
Now playing with the (anti)symmetries one gets
re =10 =T =0 forall {p,q} C{1,2,3}.

So if two indices are the same I' vanish. When all the three indices are
different, instead, we can always move the indices around and find

ffj = sign(a)f“;'z where 0(1) =4,0(2) = j,0(3) = k.

This means that ff] = ag}; for some o € C®(R?).
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3. The sphere

Use Gauss’ equations to prove that the sphere of radius r > 0,
S = {r e R"™ . |z| =1}
has constant sectional curvatures equal to 1/72.

Solution. Let us denote (-, -) the scalar product of R"™ and (in consistency
with the notation used in the lecture) let D and D denote respectively the
Levy-Civita connections of M = R"*! and of M = S? (notice that D is just
standard component-wise differentiation)

Define N : R"™\ {0} — R as N(z) = x/r and note that N is a smooth
extension of a unit normal vector field to S,. Clearly given any (smooth
extension of a) vector field Z € I'(T'S,) we have

We can then compute, for X, Y tangent vector fields to S,

hX,Y) = (DxY)* = (DxY,N)N = —(Y, DxN)N = _71<X, YN

Hence, using Gauss’ equations we obtain, for any pair of perpendicular
unit vectores eq, eo € T'M, we have:

R(el7 €2, €1, 62) = R(ela €2, €1, 62) + <h(617 61)7 h<627 62)) - <h<€17 62)7 h(€17 62>>

1
:0+—2+0.
T

In other words all sectional curvatures are equal to 1/r? as claimed.



