Prof. Dr. Joaquim Serra

Solutions 8

1. Locally symmetric spaces

Let M be a connected m-dimensional Riemannian manifold. Then M is called locally symmetric if for all $p \in M$ there is a normal neighborhood $B(p, r)$ such that the local geodesic reflection $\sigma_{p}:=\exp _{p} \circ(-\mathrm{id}) \circ \exp _{p}^{-1}: B(p, r) \rightarrow$ $B(p, r)$ is an isometry.
(a) Show that if M is locally symmetric, then $D R \equiv 0$.
[Use that $d\left(\sigma_{p}\right)_{p}=-\mathrm{id}$ on $T M_{p}$.]
(b) Suppose that $D R \equiv 0$. Show that if $c:[-1,1] \rightarrow M$ is a geodesic and $\left\{E_{i}\right\}_{i=1}^{m}$ is a parallel orthonormal frame along c, then $R\left(E_{i}, c^{\prime}\right) c^{\prime}=$ $\sum_{k=1}^{m} r_{i}^{k} E_{k}$ for constants r_{i}^{k}.
(c) Show that if $D R \equiv 0$, then M is locally symmetric.
$\left[\right.$ Let $q \in B(p, r), q \neq p$, and $v \in T M_{q}$. To show that $\left|d\left(\sigma_{p}\right)_{q}(v)\right|=|v|$, consider the geodesic $c:[-1,1] \rightarrow B(p, r)$ with $c(0)=p, c(1)=q$, and a Jacobi field Y along c with $Y(0)=0$ and $Y(1)=v$. Use (b).]

Solution. (a) Suppose that M is locally symmetric, let $p \in M$ and $w, x, y, z \in$ $T M_{p}$. Then, since σ_{p} is an isometry and $d\left(\sigma_{p}\right)_{p}=-\mathrm{id}$ on $T M_{p}$ we have

$$
\begin{aligned}
-\left(D_{w} R\right)(x, y) z & =d\left(\sigma_{p}\right)_{p}\left(D_{w} R\right)(x, y) z \\
& =\left(D_{d\left(\sigma_{p}\right)_{p} w}\right)\left(d\left(\sigma_{p}\right)_{p} x, d\left(\sigma_{p}\right)_{p} y\right) d\left(\sigma_{p}\right)_{p} z \\
& =\left(D_{-w} R\right)(-x,-y)-z \\
& =\left(D_{w} R\right)(x, y) z
\end{aligned}
$$

so $\left(D_{w} R\right)(x, y) z=0$.
b) Recall that for $X, Y, Z, W \in \Gamma(T M)$

$$
\begin{aligned}
D_{W}(R(X, Y) Z)= & R(X, Y) D_{W}(Z)+R\left(D_{W} X, Y\right) \\
& +R\left(X, D_{W} Y\right) Z+\left(D_{W} R\right)(X, Y) Z .
\end{aligned}
$$

Now, write $R\left(E_{i}, c^{\prime}\right) c^{\prime}=\sum_{k=1}^{m} f_{i}^{k} E_{k}$ for some functions $f_{i}^{k}:[-1,1] \rightarrow \mathbb{R}$.

Since E_{i} and c^{\prime} are parallel vector fields, the above relation implies that

$$
\begin{aligned}
0 & =\left(D_{\partial / \partial t} R\right)\left(E_{i}, c^{\prime}\right) c^{\prime} \\
& =D_{\partial / \partial t}\left(R\left(E_{i}, c^{\prime}\right) c^{\prime}\right) \\
& =\sum_{k=1}^{m} D_{\partial / \partial t}\left(f_{i}^{k} E_{k}\right) \\
& =\sum_{k=1}^{m}\left(\dot{f}_{i}^{k} E_{k}+f_{i}^{k} D_{\partial / \partial t} E_{k}\right) \\
& =\sum_{k=1}^{m} \dot{f}_{i}^{k} E_{k}
\end{aligned}
$$

hence the f_{i}^{k} are constant.
c) Let $q \in B(p, r), q \neq p$ and $v \in T M_{q}$. We must show that $\left|d\left(\sigma_{p}\right)_{q}(v)\right|=$ $|v|$. Let $c:[-1,1] \rightarrow M$ be the geodesic with $c(0)=p$ and $c(1)=q$. Let Y be the Jacobi field along c with $Y(0)=0$ and $Y(1)=v$. Since σ_{p} reverts geodesics it follows that $d\left(\sigma_{p}\right)_{q} Y(1)=Y(-1)$, so it remains to show that $|Y(1)|=|Y(-1)|$. Write $Y=\sum_{i=1}^{m} h^{i} E_{i}$ for some functions $h^{i}:[-1,1] \rightarrow \mathbb{R}$ then the Jacobi equation implies that

$$
\ddot{h}^{k}+\sum_{i=1}^{m} h^{i} r_{i}^{k}=0
$$

with $h^{i}(0)=0$, for $k=1, \ldots, m$. It follows that $h^{i}(-t)=-h^{i}(t)$ for all $t \in[-1,1]$. In particular $|Y(-1)|=|Y(1)|$.

Prof. Dr. Joaquim Serra

2. Conjugate points in manifolds with curvature bounded from above

(a) Prove directly, without using the Rauch Comparison Theorem, that there are no conjugate points in manifolds with non-positive sectional curvature.
(b) Show that in manifolds with sectional curvature at most κ, where $\kappa>$ 0 , there are no conjugate points along geodesics of length $<\pi / \sqrt{\kappa}$.
(c) Show that if $c:[0, \pi / \sqrt{\kappa}] \rightarrow M$ is a unit speed geodesic in a manifold with sec $\geq \kappa>0$, then some $c(t)$ is conjugate to $c(0)$ along $\left.c\right|_{[0, t]}$.

Solution. (a) Let Y be a Jacobi field along some geodesic $c:[0, l] \rightarrow M$ with $Y(0)=0$ and define $f:[0, l] \rightarrow \mathbb{R}, f(t):=|Y(t)|^{2} \geq 0$. By our assumption, we have $R\left(Y, c^{\prime}, Y, c^{\prime}\right) \leq 0$ and therefore

$$
\begin{aligned}
f^{\prime}(t) & =2\left\langle Y(t), Y^{\prime}(t)\right\rangle \\
f^{\prime \prime}(t) & =2\left\langle Y^{\prime}(t), Y^{\prime}(t)\right\rangle+2\left\langle Y(t), Y^{\prime \prime}(t)\right\rangle \\
& =2\left|Y^{\prime}(t)\right|^{2}-2 R\left(Y(t), c^{\prime}(t), Y(t), c^{\prime}(t)\right) \geq 2\left|Y^{\prime}(t)\right|^{2} \geq 0
\end{aligned}
$$

This implies that f is convex and hence, if $Y(t)=0$ for some $t>0$, we get $\left.f\right|_{[0, t]} \equiv 0$, i.e. $Y \equiv 0$.
(b) First, consider the model space M_{κ} with constant sectional curvature κ. Let $\bar{c}:[0, l] \rightarrow M_{\kappa}$ be a geodesic with $\left|\bar{c}^{\prime}(t)\right|=1$ and \bar{Y} a Jacobi field along \bar{c} with $\bar{Y}(0)=0$. Such a Jacobi field is given by

$$
\bar{Y}(t)=a t \bar{c}^{\prime}(t)+b \sin (\sqrt{\kappa} t) N(t)
$$

where N is a normal and parallel vector field along \bar{c}, compare 1 in Serie 7. In particular, we have $|\bar{Y}(t)|>0$ for $0<t<\pi / \sqrt{\kappa},(a, b) \neq(0,0)$ and therefore, $\bar{c}(t)$ is not conjugate to $\bar{c}(0)$ along \bar{c}.

For a manifold M with sec $\leq \kappa$, we can now apply the Rauch Comparison Theorem for M and M_{κ}. We conclude that if Y is a Jacobi field with $Y(0)=0$ and $Y^{\prime}(0) \neq 0$ along some geodesic $c:[0, l] \rightarrow M$ with $L(c)<\pi / \sqrt{\kappa}$, we have $|Y(t)| \geq|\bar{Y}(t)|>0$.
(c) Assume that there are no conjugate points along c.

Let $\bar{c}:[0, \pi / \sqrt{\kappa}] \rightarrow M_{\kappa}$ be a geodesic and consider the Jacobi field $\bar{Y}(t)=\sin (\sqrt{\kappa} t) N(t)$ for some normal and parallel vector field N along \bar{c}. Furthermore, let Y be a normal Jacobi field along c with $Y(0)=0$ and $\left|Y^{\prime}(0)\right|=\left|\bar{Y}^{\prime}(0)\right|$. But then we get by the Rauch Comparison Theorem that $\left|\bar{Y}\left(\frac{\pi}{\sqrt{\kappa}}\right)\right| \geq\left|Y\left(\frac{\pi}{\sqrt{\kappa}}\right)\right|>0$, a contradiction.

Prof. Dr. Joaquim Serra

3. Volume comparison

Let M be an m-dimensional Riemannian manifold with sectional curvature $\sec \leq \kappa, p \in M$ and $r>0$ such that $\left.\exp _{p}\right|_{B_{r}(0)}$ is a diffeomorphism. Furthermore, let $V_{\kappa}^{m}(r)$ denote the volume of a ball with radius r in the m dimensional model space M_{κ}^{m} of constant sectional curvature $\kappa \in \mathbb{R}$. Prove that $V\left(B_{r}(p)\right) \geq V_{\kappa}^{m}$.

Solution. Note first that if $\kappa>0$, then $V_{\kappa}^{m}(r)=V_{\kappa}^{m}\left(D_{\kappa}\right)$ for all $r>D_{\kappa}:=$ $\pi / \sqrt{\kappa}$ (the diameter of M_{κ}^{m}). Hence, if $\kappa>0$, we may assume that $r \leq D_{\kappa}$.

Choose a base point \bar{p} in M_{κ}^{m} and a linear isometry $H: T M_{p} \rightarrow T\left(M_{\kappa}^{m}\right)_{\bar{p}}$. Since $\left.\exp _{p}\right|_{B_{r}}$ is a diffeomorpism onto its image, we know from Proposition 1.21 that $B_{r}(p)=\exp _{p}\left(B_{r}\right)$. Define $F: B_{r}(p) \rightarrow B_{r}(\bar{p})$ by $F:=\exp _{\bar{p}} \circ H \circ$ $\left(\left.\exp _{p}\right|_{B_{r}}\right)^{-1}$. The proof of Corollary 3.19 shows that for all $x, w \in T M_{p}$ with $|x|<r$,

$$
\left|d\left(\exp _{p}\right)_{x}(w)\right| \geq\left|d\left(\exp _{\bar{p}}\right)_{H x}(H w)\right|
$$

Thus, for all $q \in B_{r}(p)$ and $v \in T M_{q}$,

$$
\left|d F_{q}(v)\right| \leq|v| .
$$

This implies that the volume distortion factor $J_{F}(q)$ of F at q is ≤ 1. Hence,

$$
V_{\kappa}^{m}(r)=V\left(B_{\bar{p}}(r)\right)=\int_{B_{p}(r)} J_{F}(q) d V(q) \leq V\left(B_{p}(r)\right)
$$

