D-MATH Differential Geometry II FS23
Prof. Dr. Joaquim Serra

Solutions 9

1. Poincaré models of hyperbolic space

Let us introduce the following two well-known models of the hyperbolic space:

A8+
Unit ball {|z| <1} C R" equipped with metric g;; = ﬁ
— |z
and
. 0 . o O
Half space {z" > 0} C R" equipped with metric g;; = @)
x

a) Show that composing the transformations y = x + (3 — 22")e,, and
z=-en+ (y—en)|y — e, 2 give an isometry between the two previous
Riemannian manifolds

b) Show that, for the second model, circular arcs at {z" = 0} are geode-
sics.

c¢) Show that given any given point all geodesic rays x(t), ¢ > 0 emanating
from it are minimizing up to arbitrarily large values of ¢ > 0 (note that
this is stronger than geodesic completeness).

d) Show that the sectional curvatures are constantly equal to —1.

Solution. a) We have
dz = (y — en)ly — en|dy — 2|y — en| 7 (y — €n) - dy(y — en),
|dz|? = |y — ex|"*|dy|”
Lo = (1= 2"y — en|
Hence, using |dy| = |dz| and 2y™ — 1 = —22™ we obtain

Aldz*>  Aldy* |zl

L—1]z)? @-29m)2 (@)

b) In order to compute the geodesic equation we let x¢(t) := z(t) +&(t),
where both z, ¢ are function from (a, b) to {z" > 0}, £ vanishing at a and b.
We have

b / / bt /
+ee) SR
A gy =i / = _ _ o
0=l S il | G ™ T, WG @t

After integrating by parts and using that £ is arbitrary we find

_<\90'\HE/90”)>/ B (Q‘::)’g e, = 0.
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Also, z(t) is parametrized by the arc length iff % =1

Hence, we obtain

@YY @y, 1
=0 fora=12,...,n—1 — =0
((1‘")2 or a = » T (xn)Q + n
Take now x(t) = Rcosf(t)e; + Rsinf(t)e,, for some R > 0, with 6(t)

satisfying 6’ = sin 6.
We have:

(gg;)/ B <;%ssi;§z'>’+ Rsling =(-1/R)' =0

@)\ 1 [ cos6d ' 1
((w”)2> T T (Rsin20> * Rsind
(cotan 0)’ N 1 -0’ N 1 _o
R Rsinf Rsin?6  Rsinf

and

Hence (using that the metric is invariant under translations and rotation in
the first n — 1 variables, we have shown that half circular arcs with centers
on {z" = 0} are geodesics. Since for any point p € {z™ > 0} and for any unit
vector v € S"~! there is a (unique) half circular arc with center on {z" = 0}
through p and tangent to v, these are all geodesics.

¢) The geodesic completeness follows from the fact that 6(t) above (sa-
tisfying 6’ = sin#) is the arc length and f; sidnee — oo ifalOorb T
Also, since given any two points in{z™ > 0} there is a unique half circular
arc with center on {2 = 0} through them, this must be the minimizing geo-
desic joining them. As a consequence, any geodesic joining any two points is

minimizing.
d) By Koszul’s formula, for o, 5 = 1,2,...,n — 1 we have

vaaaﬂ = (xn)_16068n7 Vana = (xn)_16a7 Va’ﬂa - (;Un)_lan
Hence,
Vo, Va0 = —(2")*0ap0s,  Va,Vo,05 = —(2") *0a.

This implies
R(03,04)05 = —(x”)Qaa.

Similarly,

R(0n,00)0n = — (")

This implies that the sectional curvatures are constantly equal to —1.
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2. “Uniqueness” and symmetries of the hyperbolic space

Prove that if M is a n-dimensional Riemannian manifold satisfying properties
c) and d) in the previous exercise and p € M then exp,, induces an isometry
between R™ with metric

)2) sinh? |z|

g(w,w) = (w-i)2+(|w|2— (w- % TR (1)

|| ||
and M. Deduce that given any two points p, ¢ in the hyperbolic space H and

any isometry between their tangent spaces TH, — TH, there is a unique
isometry f : H — H such that f(p) = q and df, = H.

Solution. Let c(t) be a geodesic on M and Y (t) a Jacobi field. Take E(t)
parallel and orthogonal to ¢(t). Then, since M has sectional curvatures con-
stantly equal to —1, Y = fFE satisfies the Jacobi field equation provided
1" — f =0, which has solutions cosh and sinh.

Notice that ¢+ (exp,)((v + cw)t) gives a geodesic for all ¢, for all fixed
v,w € TM). Hence, the variation Y (t) = d(expp)u(wt) = td(expy)v(w) is
a Jacobi field. Hence As shown in the lecture, this fact and Gauss’ lemma
allows us to compute |d(exp,),(w)| as

d(expy)o(w)]? = (w- 22 + (Juf? — (w- )% 2t

In other words the metric of M in normal coordinates z is given by .

Also, since by assumption M satisfies the property c¢) in the previous
excercise we obtain that the map exp, : T'"M;, — M is injective (and a
diffeomorphism). It follows that M is isometric to R™ with metric g given
by .

Finally, since we can replace p by any other point ¢ and the expression
of g in local coordinate given by exp, will be the same, and since the metric
is clearly rotationally invariant, it follows that for any isometry between
TH, — TH, there is a unique isometry f : H — H such that f(p) = ¢ and
df, = H (with is given by (exp,) o H o (exp,)*.

3. Translations

Suppose that I' is a group of translations of R that acts freely and properly
discontinuously on R™.

a) Show that there exist linearly independent vectors vy,...,vp € R™
such that
k
= {x'—>x+2zivi c(21y000,28) EZk} ~ 7F.
=1
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b) Let [ denote the infimum of the lengths of all closed curves in R™/T" that
are not null-homotopic. Show that [ equals the length of the shortest
non-zero vector of the form Z§:1 ziv; with z; € Z as above.

Solution. a) For each g € T" there is some v, € R™ such that gz = = + v,
for all x € R™ and since I' acts freely, we have v, # 0 for g # id. We denote
V = {v, € R™ : g € I'}. Note that, as I" acts properly discontinuously,
V' N B,(0) is finite for all » > 0 and thus each subset of V has an element of
minimal length.

We now do induction on m. For m = 1, choose g € I"\ {id} such that
|vg| is of minimal length. If there is some v € V with v = Avy, A ¢ Z, we also
have w :=v— [ A|vy, € V'\ {0} with |w| < |v,], a contradiction to minimality.

For m > 2, let v, € V'\ {0} be of minimal length and let V' := span(v,)N
V. By the same argument as above, we get V' = Zuv,,.

Then we have R™ = R @ Rv, with projection map 7: R™ — R™ 1
and IV := I'/gZ acts by translations on R™~! via [h]lz = 2 + 7(vy). As
for h ¢ gZ we have w(vp) # 0, this action is free. We claim that it is
properly discontinuous as well. If not, there are (hy)neny € I' with 7(vp,,) #
m(vp,,) and |7 (vp,)| < r for some r > 0. But then, there are I, € Z such
that |vs, — m(vh,) — lnvg| < |vg], i.e. (Un,—1,9)nen is an infinite subset of
VN BT+|vg|(0), contradicting that I' acts properly discontinuously.

By our induction hypothesis, there are ho, ..., hi € I' such that

7(V) =Zn(vp,) & ... S Zr(vp,)

and consequently V' = Zv, ® Zvp, ® ... ® Loy, .

b) Let 7: R™ — R™/I" denote the covering map and let ¢: [0,1] — R™/T
be a closed curve in R™/T". Then for p € 7=1(c(0)), there exists a unique lift
¢: [0,1] — R™ of ¢ with ¢(0) = p. Furthermore, if ¢ is not null-homotopic,
we have g :=¢(1) # ¢(0) and therefore

L(c) = L(c) > d(p,q) =

)

k
g 2iV;
i=1

for some (z1,...,2) € Z¥\ {0}.
Finally, if v = Ele ziv; # 0 is of minimal length, then c: [0,1] — R™/T,
c(t) := 7(tv), has length L(c) = |v|.



