Solutions 9

1. Poincaré models of hyperbolic space

Let us introduce the following two well-known models of the hyperbolic space:

Unit ball
$$\{|z| < 1\} \subset \mathbb{R}^n$$
 equipped with metric $g_{ij} = \frac{4\delta_{ij}}{(1-|z|^2)^2}$

and

Half space
$$\{x^n > 0\} \subset \mathbb{R}^n$$
 equipped with metric $g_{ij} = \frac{\delta_{ij}}{(x^n)^2}$.

- a) Show that composing the transformations $y = x + (\frac{1}{2} 2x^n)e_n$ and $z = e_n + (y e_n)|y e_n|^{-2}$ give an isometry between the two previous Riemannian manifolds
- b) Show that, for the second model, circular arcs at $\{x^n = 0\}$ are geodesics.
- c) Show that given any given point all geodesic rays $x(t), t \ge 0$ emanating from it are minimizing up to arbitrarily large values of t > 0 (note that this is stronger than geodesic completeness).
- d) Show that the sectional curvatures are constantly equal to -1.

Solution. a) We have

$$dz = (y - e_n)|y - e_n|^{-2}dy - 2|y - e_n|^{-4}(y - e_n) \cdot dy(y - e_n),$$
$$|dz|^2 = |y - e_n|^{-4}|dy|^2$$
$$1 - |z|^2 = (1 - 2y^n)|y - e_n|^{-2}$$

Hence, using |dy| = |dx| and $2y^n - 1 = -2x^n$ we obtain

$$\frac{4|dz|^2}{(1-|z|^2)^2} = \frac{4|dy|^2}{(1-2y^n)^2} = \frac{|dx|^2}{(x^n)^2}$$

b) In order to compute the geodesic equation we let $x_{\varepsilon}(t) := x(t) + \varepsilon \xi(t)$, where both x, ξ are function from (a, b) to $\{x^n > 0\}$, ξ vanishing at a and b. We have

$$0 = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}L(x_{\varepsilon}) = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0}\int_{a}^{b} \frac{|x'+\varepsilon\xi'|}{(x^{n}+\varepsilon\xi^{n})}dt = \int_{a}^{b} \frac{x'\cdot\xi'}{|x'|(x^{n})} - \frac{|x'|}{(x^{n})^{2}}\xi^{n}dt.$$

After integrating by parts and using that ξ is arbitrary we find

$$-\left(\frac{x'}{|x'|(x^n)}\right)' - \frac{|x'|}{(x^n)^2}e_n = 0.$$

D-MATH Differential Geometry II

Prof. Dr. Joaquim Serra

Also, x(t) is parametrized by the arc length iff $\frac{|x'(t)|^2}{(x^n(t))^2} = 1$. Hence, we obtain

$$\left(\frac{(x^{\alpha})'}{(x^{n})^{2}}\right)' = 0$$
 for $\alpha = 1, 2, \dots, n-1$ $\left(\frac{(x^{n})'}{(x^{n})^{2}}\right)' + \frac{1}{x^{n}} = 0$

Take now $x(t) = R \cos \theta(t) \boldsymbol{e}_1 + R \sin \theta(t) \boldsymbol{e}_n$, for some R > 0, with $\theta(t)$ satisfying $\theta' = \sin \theta$.

We have:

$$\left(\frac{(x^1)'}{(x^n)^2}\right)' = \left(\frac{-\sin\theta\theta'}{R\sin^2\theta}\right)' + \frac{1}{R\sin\theta} = \left(-\frac{1}{R}\right)' = 0$$

and

$$\left(\frac{(x^n)'}{(x^n)^2}\right)' + \frac{1}{x^n} = \left(\frac{\cos\theta\theta'}{R\sin^2\theta}\right)' + \frac{1}{R\sin\theta}$$
$$= \frac{(\cot an\theta)'}{R} + \frac{1}{R\sin\theta} = \frac{-\theta'}{R\sin^2\theta} + \frac{1}{R\sin\theta} = 0.$$

Hence (using that the metric is invariant under translations and rotation in the first n-1 variables, we have shown that half circular arcs with centers on $\{x^n = 0\}$ are geodesics. Since for any point $p \in \{x^n > 0\}$ and for any unit vector $v \in \mathbb{S}^{n-1}$ there is a (unique) half circular arc with center on $\{x^n = 0\}$ through p and tangent to v, these are *all* geodesics.

c) The geodesic completeness follows from the fact that $\theta(t)$ above (satisfying $\theta' = \sin \theta$) is the arc length and $\int_a^b \frac{d\theta}{\sin \theta} \to +\infty$ if $a \downarrow 0$ or $b \uparrow \pi$. Also, since given any two points $\inf\{x^n > 0\}$ there is a unique half circular arc with center on $\{x^n = 0\}$ through them, this must be the minimizing geodesic joining them. As a consequence, any geodesic joining any two points is minimizing.

d) By Koszul's formula, for $\alpha, \beta = 1, 2, ..., n-1$ we have

$$\nabla_{\partial_{\alpha}}\partial_{\beta} = (x^n)^{-1}\delta_{\alpha\beta}\partial_n, \quad \nabla_{\partial_n}\partial_{\alpha} = (x^n)^{-1}\partial_{\alpha}, \quad \nabla_{\partial_n}\partial_n = (x^n)^{-1}\partial_n$$

Hence,

$$\nabla_{\partial_{\beta}} \nabla_{\partial_{\alpha}} \partial_{\beta} = -(x^n)^2 \delta_{\alpha\beta} \partial_{\beta}, \qquad \nabla_{\partial_{\alpha}} \nabla_{\partial_{\beta}} \partial_{\beta} = -(x^n)^{-2} \partial_{\alpha}.$$

This implies

$$R(\partial_{\beta}, \partial_{\alpha})\partial_{\beta} = -(x^n)^2 \partial_{\alpha}.$$

Similarly,

$$R(\partial_n, \partial_\alpha)\partial_n = -(x^n)^2 \partial_\alpha.$$

This implies that the sectional curvatures are constantly equal to -1.

FS23

D-MATH Differential Geometry II Prof. Dr. Joaquim Serra

2. "Uniqueness" and symmetries of the hyperbolic space

Prove that if M is a *n*-dimensional Riemannian manifold satisfying properties c) and d) in the previous exercise and $p \in M$ then \exp_p induces an isometry between \mathbb{R}^n with metric

$$g(w,w) = \left(w \cdot \frac{x}{|x|}\right)^2 + \left(|w|^2 - \left(w \cdot \frac{x}{|x|}\right)^2\right) \frac{\sinh^2|x|}{|x|^2}$$
(1)

and M. Deduce that given any two points p, q in the hyperbolic space \mathbb{H} and any isometry between their tangent spaces $T\mathbb{H}_p \to T\mathbb{H}_q$ there is a unique isometry $f: \mathbb{H} \to \mathbb{H}$ such that f(p) = q and $df_p = H$.

Solution. Let c(t) be a geodesic on M and Y(t) a Jacobi field. Take E(t) parallel and orthogonal to $\dot{c}(t)$. Then, since M has sectional curvatures constantly equal to -1, Y = fE satisfies the Jacobi field equation provided f'' - f = 0, which has solutions cosh and sinh.

Notice that $t \mapsto (\exp_p)((v + \varepsilon w)t)$ gives a geodesic for all ε , for all fixed $v, w \in TM_p$. Hence, the variation $Y(t) = d(exp_p)_{vt}(wt) = td(exp_p)_{vt}(w)$ is a Jacobi field. Hence As shown in the lecture, this fact and Gauss' lemma allows us to compute $|d(\exp_p)_v(w)|$ as

$$|d(\exp_p)_v(w)|^2 = (w \cdot \frac{v}{v})^2 + \left(|w|^2 - \left(w \cdot \frac{v}{|v|}\right)^2\right) \frac{\sinh^2 |v|}{|v|^2}.$$

In other words the metric of M in normal coordinates x is given by (1).

Also, since by assumption M satisfies the property c) in the previous excercise we obtain that the map $\exp_p : TM_p \to M$ is injective (and a diffeomorphism). It follows that M is isometric to \mathbb{R}^n with metric g given by (1).

Finally, since we can replace p by any other point q and the expression of g in local coordinate given by \exp_q will be the same, and since the metric is clearly rotationally invariant, it follows that for any isometry between $T\mathbb{H}_p \to T\mathbb{H}_q$ there is a unique isometry $f : \mathbb{H} \to \mathbb{H}$ such that f(p) = q and $df_p = H$ (with is given by $(\exp_q) \circ H \circ (\exp_p)^{-1}$.

3. Translations

Suppose that Γ is a group of translations of \mathbb{R}^m that acts freely and properly discontinuously on \mathbb{R}^m .

a) Show that there exist linearly independent vectors $v_1, \ldots, v_k \in \mathbb{R}^m$ such that

$$\Gamma = \left\{ x \mapsto x + \sum_{i=1}^{k} z_i v_i : (z_1, \dots, z_k) \in \mathbb{Z}^k \right\} \simeq \mathbb{Z}^k.$$

Prof. Dr. Joaquim Serra

D-MATH

b) Let l denote the infimum of the lengths of all closed curves in \mathbb{R}^m/Γ that are not null-homotopic. Show that l equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_i v_i$ with $z_i \in \mathbb{Z}$ as above.

Solution. a) For each $g \in \Gamma$ there is some $v_q \in \mathbb{R}^m$ such that $gx = x + v_q$ for all $x \in \mathbb{R}^m$ and since Γ acts freely, we have $v_g \neq 0$ for $g \neq id$. We denote $V := \{ v_g \in \mathbb{R}^m : g \in \Gamma \}$. Note that, as Γ acts properly discontinuously, $V \cap B_r(0)$ is finite for all r > 0 and thus each subset of V has an element of minimal length.

We now do induction on m. For m = 1, choose $g \in \Gamma \setminus {\text{id}}$ such that $|v_g|$ is of minimal length. If there is some $v \in V$ with $v = \lambda v_g, \lambda \notin \mathbb{Z}$, we also have $w := v - \lfloor \lambda \rfloor v_q \in V \setminus \{0\}$ with $|w| < |v_q|$, a contradiction to minimality. For $m \geq 2$, let $v_q \in V \setminus \{0\}$ be of minimal length and let $V' := \operatorname{span}(v_q) \cap$

V. By the same argument as above, we get $V' = \mathbb{Z}v_q$. Then we have $\mathbb{R}^m = \mathbb{R}^{m-1} \oplus \mathbb{R}v_g$ with projection map $\pi \colon \mathbb{R}^m \to \mathbb{R}^{m-1}$ and $\Gamma' := \Gamma/g\mathbb{Z}$ acts by translations on \mathbb{R}^{m-1} via $[h]x = x + \pi(v_h)$. As for $h \notin g\mathbb{Z}$ we have $\pi(v_h) \neq 0$, this action is free. We claim that it is properly discontinuous as well. If not, there are $(h_n)_{n\in\mathbb{N}}\in\Gamma$ with $\pi(v_{h_n})\neq$ $\pi(v_{h_n})$ and $|\pi(v_{h_n})| < r$ for some r > 0. But then, there are $l_n \in \mathbb{Z}$ such that $|v_{h_n} - \pi(v_{h_n}) - l_n v_g| < |v_g|$, i.e. $(v_{h_n - l_n g})_{n \in N}$ is an infinite subset of $V \cap B_{r+|v_q|}(0)$, contradicting that Γ acts properly discontinuously.

By our induction hypothesis, there are $h_2, \ldots, h_k \in \Gamma$ such that

$$\pi(V) = \mathbb{Z}\pi(v_{h_2}) \oplus \ldots \oplus \mathbb{Z}\pi(v_{h_k})$$

and consequently $V = \mathbb{Z}v_q \oplus \mathbb{Z}v_{h_2} \oplus \ldots \oplus \mathbb{Z}v_{h_k}$.

b) Let $\pi: \mathbb{R}^m \to \mathbb{R}^m / \Gamma$ denote the covering map and let $c: [0,1] \to \mathbb{R}^m / \Gamma$ be a closed curve in \mathbb{R}^m/Γ . Then for $p \in \pi^{-1}(c(0))$, there exists a unique lift $\overline{c}: [0,1] \to \mathbb{R}^m$ of c with $\overline{c}(0) = p$. Furthermore, if c is not null-homotopic, we have $q := \overline{c}(1) \neq \overline{c}(0)$ and therefore

$$L(c) = L(\overline{c}) \ge d(p,q) = \left| \sum_{i=1}^{k} z_i v_i \right|,$$

for some $(z_1, \ldots, z_k) \in \mathbb{Z}^k \setminus \{0\}$. Finally, if $v = \sum_{i=1}^k z_i v_i \neq 0$ is of minimal length, then $c \colon [0, 1] \to \mathbb{R}^m / \Gamma$, $c(t) := \pi(tv)$, has length L(c) = |v|.