Prof. Dr. Joaquim Serra

Solutions 9

1. Poincaré models of hyperbolic space

Let us introduce the following two well-known models of the hyperbolic space:
Unit ball $\{|z|<1\} \subset \mathbb{R}^{n}$ equipped with metric $g_{i j}=\frac{4 \delta_{i j}}{\left(1-|z|^{2}\right)^{2}}$
and
Half space $\left\{x^{n}>0\right\} \subset \mathbb{R}^{n}$ equipped with metric $g_{i j}=\frac{\delta_{i j}}{\left(x^{n}\right)^{2}}$.
a) Show that composing the transformations $y=x+\left(\frac{1}{2}-2 x^{n}\right) \boldsymbol{e}_{n}$ and $z=\boldsymbol{e}_{n}+\left(y-\boldsymbol{e}_{n}\right)\left|y-\boldsymbol{e}_{n}\right|^{-2}$ give an isometry between the two previous Riemannian manifolds
b) Show that, for the second model, circular arcs at $\left\{x^{n}=0\right\}$ are geodesics.
c) Show that given any given point all geodesic rays $x(t), t \geq 0$ emanating from it are minimizing up to arbitrarily large values of $t>0$ (note that this is stronger than geodesic completeness).
d) Show that the sectional curvatures are constantly equal to -1 .

Solution. a) We have

$$
\begin{gathered}
d z=\left(y-\boldsymbol{e}_{n}\right)\left|y-\boldsymbol{e}_{n}\right|^{-2} d y-2\left|y-\boldsymbol{e}_{n}\right|^{-4}\left(y-\boldsymbol{e}_{n}\right) \cdot d y\left(y-\boldsymbol{e}_{n}\right), \\
|d z|^{2}=\left|y-\boldsymbol{e}_{n}\right|^{-4}|d y|^{2} \\
1-|z|^{2}=\left(1-2 y^{n}\right)\left|y-\boldsymbol{e}_{n}\right|^{-2}
\end{gathered}
$$

Hence, using $|d y|=|d x|$ and $2 y^{n}-1=-2 x^{n}$ we obtain

$$
\frac{4|d z|^{2}}{\left(1-|z|^{2}\right)^{2}}=\frac{4|d y|^{2}}{\left(1-2 y^{n}\right)^{2}}=\frac{|d x|^{2}}{\left(x^{n}\right)^{2}}
$$

b) In order to compute the geodesic equation we let $x_{\varepsilon}(t):=x(t)+\varepsilon \xi(t)$, where both x, ξ are function from (a, b) to $\left\{x^{n}>0\right\}, \xi$ vanishing at a and b. We have

$$
0=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} L\left(x_{\varepsilon}\right)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \int_{a}^{b} \frac{\left|x^{\prime}+\varepsilon \xi^{\prime}\right|}{\left(x^{n}+\varepsilon \xi^{n}\right)} d t=\int_{a}^{b} \frac{x^{\prime} \cdot \xi^{\prime}}{\left|x^{\prime}\right|\left(x^{n}\right)}-\frac{\left|x^{\prime}\right|}{\left(x^{n}\right)^{2}} \xi^{n} d t
$$

After integrating by parts and using that ξ is arbitrary we find

$$
-\left(\frac{x^{\prime}}{\left|x^{\prime}\right|\left(x^{n}\right)}\right)^{\prime}-\frac{\left|x^{\prime}\right|}{\left(x^{n}\right)^{2}} e_{n}=0
$$

Prof. Dr. Joaquim Serra
Also, $x(t)$ is parametrized by the arc length iff $\frac{\left|x^{\prime}(t)\right|^{2}}{\left(x^{n}(t)\right)^{2}}=1$.
Hence, we obtain

$$
\left(\frac{\left(x^{\alpha}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}=0 \quad \text { for } \alpha=1,2, \ldots, n-1 \quad\left(\frac{\left(x^{n}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}+\frac{1}{x^{n}}=0
$$

Take now $x(t)=R \cos \theta(t) \boldsymbol{e}_{1}+R \sin \theta(t) \boldsymbol{e}_{n}$, for some $R>0$, with $\theta(t)$ satisfying $\theta^{\prime}=\sin \theta$.

We have:

$$
\left(\frac{\left(x^{1}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}=\left(\frac{-\sin \theta \theta^{\prime}}{R \sin ^{2} \theta}\right)^{\prime}+\frac{1}{R \sin \theta}=(-1 / R)^{\prime}=0
$$

and

$$
\begin{aligned}
\left(\frac{\left(x^{n}\right)^{\prime}}{\left(x^{n}\right)^{2}}\right)^{\prime}+\frac{1}{x^{n}} & =\left(\frac{\cos \theta \theta^{\prime}}{R \sin ^{2} \theta}\right)^{\prime}+\frac{1}{R \sin \theta} \\
& =\frac{(\operatorname{cotan} \theta)^{\prime}}{R}+\frac{1}{R \sin \theta}=\frac{-\theta^{\prime}}{R \sin ^{2} \theta}+\frac{1}{R \sin \theta}=0 .
\end{aligned}
$$

Hence (using that the metric is invariant under translations and rotation in the first $n-1$ variables, we have shown that half circular arcs with centers on $\left\{x^{n}=0\right\}$ are geodesics. Since for any point $p \in\left\{x^{n}>0\right\}$ and for any unit vector $v \in \mathbb{S}^{n-1}$ there is a (unique) half circular arc with center on $\left\{x^{n}=0\right\}$ through p and tangent to v, these are all geodesics.
c) The geodesic completeness follows from the fact that $\theta(t)$ above (satisfying $\theta^{\prime}=\sin \theta$) is the arc length and $\int_{a}^{b} \frac{d \theta}{\sin \theta} \rightarrow+\infty$ if $a \downarrow 0$ or $b \uparrow \pi$. Also, since given any two points in $\left\{x^{n}>0\right\}$ there is a unique half circular arc with center on $\left\{x^{n}=0\right\}$ through them, this must be the minimizing geodesic joining them. As a consequence, any geodesic joining any two points is minimizing.
d) By Koszul's formula, for $\alpha, \beta=1,2, \ldots, n-1$ we have

$$
\nabla_{\partial_{\alpha}} \partial_{\beta}=\left(x^{n}\right)^{-1} \delta_{\alpha \beta} \partial_{n}, \quad \nabla_{\partial_{n}} \partial_{\alpha}=\left(x^{n}\right)^{-1} \partial_{\alpha}, \quad \nabla_{\partial_{n}} \partial_{n}=\left(x^{n}\right)^{-1} \partial_{n}
$$

Hence,

$$
\nabla_{\partial_{\beta}} \nabla_{\partial_{\alpha}} \partial_{\beta}=-\left(x^{n}\right)^{2} \delta_{\alpha \beta} \partial_{\beta}, \quad \nabla_{\partial_{\alpha}} \nabla_{\partial_{\beta}} \partial_{\beta}=-\left(x^{n}\right)^{-2} \partial_{\alpha} .
$$

This implies

$$
R\left(\partial_{\beta}, \partial_{\alpha}\right) \partial_{\beta}=-\left(x^{n}\right)^{2} \partial_{\alpha} .
$$

Similarly,

$$
R\left(\partial_{n}, \partial_{\alpha}\right) \partial_{n}=-\left(x^{n}\right)^{2} \partial_{\alpha} .
$$

This implies that the sectional curvatures are constantly equal to -1 .

Prof. Dr. Joaquim Serra

2. "Uniqueness" and symmetries of the hyperbolic space

Prove that if M is a n-dimensional Riemannian manifold satisfying properties c) and d) in the previous exercise and $p \in M$ then $\exp _{p}$ induces an isometry between \mathbb{R}^{n} with metric

$$
\begin{equation*}
g(w, w)=\left(w \cdot \frac{x}{|x|}\right)^{2}+\left(|w|^{2}-\left(w \cdot \frac{x}{|x|}\right)^{2}\right) \frac{\sinh ^{2}|x|}{|x|^{2}} \tag{1}
\end{equation*}
$$

and M. Deduce that given any two points p, q in the hyperbolic space \mathbb{H} and any isometry between their tangent spaces $T \mathbb{H}_{p} \rightarrow T \mathbb{H}_{q}$ there is a unique isometry $f: \mathbb{H} \rightarrow \mathbb{H}$ such that $f(p)=q$ and $d f_{p}=H$.

Solution. Let $c(t)$ be a geodesic on M and $Y(t)$ a Jacobi field. Take $E(t)$ parallel and orthogonal to $\dot{c}(t)$. Then, since M has sectional curvatures constantly equal to $-1, Y=f E$ satisfies the Jacobi field equation provided $f^{\prime \prime}-f=0$, which has solutions cosh and sinh.

Notice that $t \mapsto\left(\exp _{p}\right)((v+\varepsilon w) t)$ gives a geodesic for all ε, for all fixed $v, w \in T M_{p}$. Hence, the variation $Y(t)=d(e x p p)_{v t}(w t)=t d\left(e x p_{p}\right)_{v t}(w)$ is a Jacobi field. Hence As shown in the lecture, this fact and Gauss' lemma allows us to compute $\left|d\left(\exp _{p}\right)_{v}(w)\right|$ as

$$
\left|d\left(\exp _{p}\right)_{v}(w)\right|^{2}=\left(w \cdot \frac{v}{v}\right)^{2}+\left(|w|^{2}-\left(w \cdot \frac{v}{|v|}\right)^{2}\right) \frac{\sinh ^{2}|v|}{|v|^{2}}
$$

In other words the metric of M in normal coordinates x is given by 11 .
Also, since by assumption M satisfies the property c) in the previous excercise we obtain that the $\operatorname{map} \exp _{p}: T M_{p} \rightarrow M$ is injective (and a diffeomorphism). It follows that M is isometric to \mathbb{R}^{n} with metric g given by (1).

Finally, since we can replace p by any other point q and the expression of g in local coordinate given by $\exp _{q}$ will be the same, and since the metric is clearly rotationally invariant, it follows that for any isometry between $T \mathbb{H}_{p} \rightarrow T \mathbb{H}_{q}$ there is a unique isometry $f: \mathbb{H} \rightarrow \mathbb{H}$ such that $f(p)=q$ and $d f_{p}=H$ (with is given by $\left(\exp _{q}\right) \circ H \circ\left(\exp _{p}\right)^{-1}$.

3. Translations

Suppose that Γ is a group of translations of \mathbb{R}^{m} that acts freely and properly discontinuously on \mathbb{R}^{m}.
a) Show that there exist linearly independent vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$ such that

$$
\Gamma=\left\{x \mapsto x+\sum_{i=1}^{k} z_{i} v_{i}:\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}^{k}\right\} \simeq \mathbb{Z}^{k}
$$

Prof. Dr. Joaquim Serra
b) Let l denote the infimum of the lengths of all closed curves in \mathbb{R}^{m} / Γ that are not null-homotopic. Show that l equals the length of the shortest non-zero vector of the form $\sum_{i=1}^{k} z_{i} v_{i}$ with $z_{i} \in \mathbb{Z}$ as above.

Solution. a) For each $g \in \Gamma$ there is some $v_{g} \in \mathbb{R}^{m}$ such that $g x=x+v_{g}$ for all $x \in \mathbb{R}^{m}$ and since Γ acts freely, we have $v_{g} \neq 0$ for $g \neq \mathrm{id}$. We denote $V:=\left\{v_{g} \in \mathbb{R}^{m}: g \in \Gamma\right\}$. Note that, as Γ acts properly discontinuously, $V \cap B_{r}(0)$ is finite for all $r>0$ and thus each subset of V has an element of minimal length.

We now do induction on m. For $m=1$, choose $g \in \Gamma \backslash\{\mathrm{id}\}$ such that $\left|v_{g}\right|$ is of minimal length. If there is some $v \in V$ with $v=\lambda v_{g}, \lambda \notin \mathbb{Z}$, we also have $w:=v-\lfloor\lambda\rfloor v_{g} \in V \backslash\{0\}$ with $|w|<\left|v_{g}\right|$, a contradiction to minimality.

For $m \geq 2$, let $v_{g} \in V \backslash\{0\}$ be of minimal length and let $V^{\prime}:=\operatorname{span}\left(v_{g}\right) \cap$ V. By the same argument as above, we get $V^{\prime}=\mathbb{Z} v_{g}$.

Then we have $\mathbb{R}^{m}=\mathbb{R}^{m-1} \oplus \mathbb{R} v_{g}$ with projection map $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m-1}$ and $\Gamma^{\prime}:=\Gamma / g \mathbb{Z}$ acts by translations on \mathbb{R}^{m-1} via $[h] x=x+\pi\left(v_{h}\right)$. As for $h \notin g \mathbb{Z}$ we have $\pi\left(v_{h}\right) \neq 0$, this action is free. We claim that it is properly discontinuous as well. If not, there are $\left(h_{n}\right)_{n \in \mathbb{N}} \in \Gamma$ with $\pi\left(v_{h_{n}}\right) \neq$ $\pi\left(v_{h_{n^{\prime}}}\right)$ and $\left|\pi\left(v_{h_{n}}\right)\right|<r$ for some $r>0$. But then, there are $l_{n} \in \mathbb{Z}$ such that $\left|v_{h_{n}}-\pi\left(v_{h_{n}}\right)-l_{n} v_{g}\right|<\left|v_{g}\right|$, i.e. $\left(v_{h_{n}-l_{n} g}\right)_{n \in N}$ is an infinite subset of $V \cap B_{r+\left|v_{g}\right|}(0)$, contradicting that Γ acts properly discontinuously.

By our induction hypothesis, there are $h_{2}, \ldots, h_{k} \in \Gamma$ such that

$$
\pi(V)=\mathbb{Z} \pi\left(v_{h_{2}}\right) \oplus \ldots \oplus \mathbb{Z} \pi\left(v_{h_{k}}\right)
$$

and consequently $V=\mathbb{Z} v_{g} \oplus \mathbb{Z} v_{h_{2}} \oplus \ldots \oplus \mathbb{Z} v_{h_{k}}$.
b) Let $\pi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} / \Gamma$ denote the covering map and let $c:[0,1] \rightarrow \mathbb{R}^{m} / \Gamma$ be a closed curve in \mathbb{R}^{m} / Γ. Then for $p \in \pi^{-1}(c(0))$, there exists a unique lift $\bar{c}:[0,1] \rightarrow \mathbb{R}^{m}$ of c with $\bar{c}(0)=p$. Furthermore, if c is not null-homotopic, we have $q:=\bar{c}(1) \neq \bar{c}(0)$ and therefore

$$
L(c)=L(\bar{c}) \geq d(p, q)=\left|\sum_{i=1}^{k} z_{i} v_{i}\right|
$$

for some $\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{Z}^{k} \backslash\{0\}$.
Finally, if $v=\sum_{i=1}^{k} z_{i} v_{i} \neq 0$ is of minimal length, then $c:[0,1] \rightarrow \mathbb{R}^{m} / \Gamma$, $c(t):=\pi(t v)$, has length $L(c)=|v|$.

