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Solutions 9

1. Poincaré models of hyperbolic space

Let us introduce the following two well-known models of the hyperbolic space:

Unit ball {|z| < 1} ⊂ Rn equipped with metric gij =
4δij

(1− |z|2)2

and

Half space {xn > 0} ⊂ Rn equipped with metric gij =
δij

(xn)2
.

a) Show that composing the transformations y = x + (12 − 2xn)en and
z = en + (y−en)|y−en|−2 give an isometry between the two previous
Riemannian manifolds

b) Show that, for the second model, circular arcs at {xn = 0} are geode-
sics.

c) Show that given any given point all geodesic rays x(t), t ≥ 0 emanating
from it are minimizing up to arbitrarily large values of t > 0 (note that
this is stronger than geodesic completeness).

d) Show that the sectional curvatures are constantly equal to −1.

Solution. a) We have

dz = (y − en)|y − en|−2dy − 2|y − en|−4(y − en) · dy(y − en),

|dz|2 = |y − en|−4|dy|2

1− |z|2 = (1− 2yn)|y − en|−2

Hence, using |dy| = |dx| and 2yn − 1 = −2xn we obtain

4|dz|2

(1− |z|2)2
=

4|dy|2

(1− 2yn)2
=
|dx|2

(xn)2

b) In order to compute the geodesic equation we let xε(t) := x(t)+εξ(t),
where both x, ξ are function from (a, b) to {xn > 0}, ξ vanishing at a and b.
We have

0 = d
dε

∣∣
ε=0

L(xε) = d
dε

∣∣
ε=0

∫ b

a

|x′ + εξ′|
(xn + εξn)

dt =

∫ b

a

x′ · ξ′

|x′|(xn)
− |x′|

(xn)2
ξndt.

After integrating by parts and using that ξ is arbitrary we find

−
(

x′

|x′|(xn)

)′
− |x′|

(xn)2
en = 0.
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Also, x(t) is parametrized by the arc length iff |x′(t)|2
(xn(t))2

= 1.
Hence, we obtain(

(xα)′

(xn)2

)′
= 0 for α = 1, 2, . . . , n− 1

(
(xn)′

(xn)2

)′
+

1

xn
= 0

Take now x(t) = R cos θ(t)e1 + R sin θ(t)en, for some R > 0, with θ(t)
satisfying θ′ = sin θ.

We have:(
(x1)′

(xn)2

)′
=

(
− sin θθ′

R sin2 θ

)′
+

1

R sin θ
=
(
− 1/R

)′
= 0

and (
(xn)′

(xn)2

)′
+

1

xn
=

(
cos θθ′

R sin2 θ

)′
+

1

R sin θ

=
(cotan θ)′

R
+

1

R sin θ
=

−θ′

R sin2 θ
+

1

R sin θ
= 0.

Hence (using that the metric is invariant under translations and rotation in
the first n − 1 variables, we have shown that half circular arcs with centers
on {xn = 0} are geodesics. Since for any point p ∈ {xn > 0} and for any unit
vector v ∈ Sn−1 there is a (unique) half circular arc with center on {xn = 0}
through p and tangent to v, these are all geodesics.

c) The geodesic completeness follows from the fact that θ(t) above (sa-
tisfying θ′ = sin θ) is the arc length and

∫ b
a

dθ
sin θ → +∞ if a ↓ 0 or b ↑ π.

Also, since given any two points in{xn > 0} there is a unique half circular
arc with center on {xn = 0} through them, this must be the minimizing geo-
desic joining them. As a consequence, any geodesic joining any two points is
minimizing.

d) By Koszul’s formula, for α, β = 1, 2, . . . , n− 1 we have

∇∂α∂β = (xn)−1δαβ∂n, ∇∂n∂α = (xn)−1∂α, ∇∂n∂n = (xn)−1∂n

Hence,

∇∂β∇∂α∂β = −(xn)2δαβ∂β, ∇∂α∇∂β∂β = −(xn)−2∂α.

This implies
R(∂β, ∂α)∂β = −(xn)2∂α.

Similarly,
R(∂n, ∂α)∂n = −(xn)2∂α.

This implies that the sectional curvatures are constantly equal to −1.
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2. “Uniqueness” and symmetries of the hyperbolic space

Prove that ifM is a n-dimensional Riemannian manifold satisfying properties
c) and d) in the previous exercise and p ∈M then expp induces an isometry
between Rn with metric

g(w,w) =
(
w · x|x|

)2
+
(
|w|2 −

(
w · x|x|

)2)sinh2 |x|
|x|2

(1)

andM . Deduce that given any two points p, q in the hyperbolic space H and
any isometry between their tangent spaces THp → THq there is a unique
isometry f : H→ H such that f(p) = q and dfp = H.

Solution. Let c(t) be a geodesic on M and Y (t) a Jacobi field. Take E(t)
parallel and orthogonal to c.(t). Then, since M has sectional curvatures con-
stantly equal to −1, Y = fE satisfies the Jacobi field equation provided
f ′′ − f = 0, which has solutions cosh and sinh.

Notice that t 7→ (expp)((v + εw)t) gives a geodesic for all ε, for all fixed
v, w ∈ TMp. Hence, the variation Y (t) = d(expp)vt(wt) = td(expp)vt(w) is
a Jacobi field. Hence As shown in the lecture, this fact and Gauss’ lemma
allows us to compute |d(expp)v(w)| as

|d(expp)v(w)|2 = (w · vv )2 +
(
|w|2 −

(
w · v|v|

)2)sinh2 |v|
|v|2

.

In other words the metric of M in normal coordinates x is given by (1).
Also, since by assumption M satisfies the property c) in the previous

excercise we obtain that the map expp : TMp → M is injective (and a
diffeomorphism). It follows that M is isometric to Rn with metric g given
by (1).

Finally, since we can replace p by any other point q and the expression
of g in local coordinate given by expq will be the same, and since the metric
is clearly rotationally invariant, it follows that for any isometry between
THp → THq there is a unique isometry f : H → H such that f(p) = q and
dfp = H (with is given by (expq) ◦H ◦ (expp)

−1.

3. Translations

Suppose that Γ is a group of translations of Rm that acts freely and properly
discontinuously on Rm.

a) Show that there exist linearly independent vectors v1, . . . , vk ∈ Rm
such that

Γ =
{
x 7→ x+

k∑
i=1

zivi : (z1, . . . , zk) ∈ Zk
}
' Zk.
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b) Let l denote the infimum of the lengths of all closed curves in Rm/Γ that
are not null-homotopic. Show that l equals the length of the shortest
non-zero vector of the form

∑k
i=1 zivi with zi ∈ Z as above.

Solution. a) For each g ∈ Γ there is some vg ∈ Rm such that gx = x + vg
for all x ∈ Rm and since Γ acts freely, we have vg 6= 0 for g 6= id. We denote
V := {vg ∈ Rm : g ∈ Γ}. Note that, as Γ acts properly discontinuously,
V ∩Br(0) is finite for all r > 0 and thus each subset of V has an element of
minimal length.

We now do induction on m. For m = 1, choose g ∈ Γ \ {id} such that
|vg| is of minimal length. If there is some v ∈ V with v = λvg, λ /∈ Z, we also
have w := v−bλcvg ∈ V \{0} with |w| < |vg|, a contradiction to minimality.

For m ≥ 2, let vg ∈ V \{0} be of minimal length and let V ′ := span(vg)∩
V . By the same argument as above, we get V ′ = Zvg.

Then we have Rm = Rm−1 ⊕ Rvg with projection map π : Rm → Rm−1
and Γ′ := Γ/gZ acts by translations on Rm−1 via [h]x = x + π(vh). As
for h /∈ gZ we have π(vh) 6= 0, this action is free. We claim that it is
properly discontinuous as well. If not, there are (hn)n∈N ∈ Γ with π(vhn) 6=
π(vhn′ ) and |π(vhn)| < r for some r > 0. But then, there are ln ∈ Z such
that |vhn − π(vhn) − lnvg| < |vg|, i.e. (vhn−lng)n∈N is an infinite subset of
V ∩Br+|vg |(0), contradicting that Γ acts properly discontinuously.

By our induction hypothesis, there are h2, . . . , hk ∈ Γ such that

π(V ) = Zπ(vh2)⊕ . . .⊕ Zπ(vhk)

and consequently V = Zvg ⊕ Zvh2 ⊕ . . .⊕ Zvhk .
b) Let π : Rm → Rm/Γ denote the covering map and let c : [0, 1]→ Rm/Γ

be a closed curve in Rm/Γ. Then for p ∈ π−1(c(0)), there exists a unique lift
c : [0, 1] → Rm of c with c(0) = p. Furthermore, if c is not null-homotopic,
we have q := c(1) 6= c(0) and therefore

L(c) = L(c) ≥ d(p, q) =

∣∣∣∣∣
k∑
i=1

zivi

∣∣∣∣∣ ,
for some (z1, . . . , zk) ∈ Zk \ {0}.

Finally, if v =
∑k

i=1 zivi 6= 0 is of minimal length, then c : [0, 1]→ Rm/Γ,
c(t) := π(tv), has length L(c) = |v|.
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