Applied Stochastic Processes

Exercise sheet 1

Quiz 1.1 [Markov chains] A die is rolled repeatedly. The outcome is a sequence of i.i.d. (independent, identically distributed) random variables $\left(\xi_{n}\right)_{n \geq 1}$ with $\mathbb{P}\left[\xi_{1}=a\right]=1 / 6, \forall a \in\{1,2, \ldots, 6\}$. We consider the following sequences of random variables $X=\left(X_{n}\right)_{n \geq 1}$:
i) Let X_{n} denote the number of rolls at time n since the most recent six.
ii) Let $X_{n}=\max \left\{\xi_{1}, \ldots, \xi_{n}\right\}$, the largest number that has come up in the first n rolls.
iii) Let $X_{n}=\max \left\{\xi_{n-1}, \xi_{n}\right\}$, the larger number of those that came up in the rolls number $n-1$ and n (the last two rolls). Here, we consider $\left(X_{n}\right)_{n \geq 2}$.
iv) Let $X_{n}=\left|\left\{\xi_{1}, \ldots, \xi_{n}\right\}\right|$, the number of different outcomes in the first n rolls.

For i)-iv):
(a) Determine the set of values S that the random variables can take.
(b) Decide if X is a Markov chain $\mathrm{MC}(\mu, P)$ for some initial μ and some transition probability P.

Whenever you answered (b) positively:
(c) Determine μ and P.
(d) Represent P as a weighted oriented graph.
(e) Can you determine the n-step transition probability?

Exercise 1.2 [Deterministic Markov chains]

(a) Show that a deterministic sequence $\left(x_{n}\right)_{n \geq 0}$ is a Markov chain if and only if there exists a function $\Phi: S \rightarrow S$ such that for all $n \geq 0$,

$$
x_{n+1}=\Phi\left(x_{n}\right) .
$$

(b) Determine all deterministic Markov chains on $S=\{1,2,3\}$.

Exercise 1.3 [Matrix representation]

Consider a Markov chain $X \sim \operatorname{MC}\left(\delta^{i}, P\right)$ on $S=\{1, \ldots, N\}$, where $i \in S$. For $A \subseteq S$, define the $N \times N$ diagonal matrix δ_{A} by $\left(\delta_{A}\right)_{i j}=\mathbb{1}_{i=j \in A}$. Recall from Proposition 1.1 in the lecture notes that for $n \geq 0, j \in S$,

$$
\mathbb{P}\left[X_{n}=j\right]=p_{i j}^{(n)}=\left(\delta^{i} P^{n}\right)_{j},
$$

where we identified δ_{i} with the row vector $(0, \ldots, 0,1,0, \ldots, 0)$, which has a 1 in the $i^{t h}$ position, and we wrote $P=\left(p_{i j}\right)_{i, j \in S}$ for the transition probability matrix.
(a) Let $k \geq 1, n_{k} \geq \ldots \geq n_{1} \geq 0$, and $i_{1}, \ldots, i_{k} \in S$. Write

$$
\mathbb{P}\left[X_{n_{1}}=i_{1}, X_{n_{2}}=i_{2}, \ldots, X_{n_{k}}=i_{k}\right]=\left(\delta^{i} R\right)_{i_{k}}
$$

for some matrix R and express R explicitly as a product of matrices.
(b) Let $k \geq 1, n_{k} \geq \ldots \geq n_{1} \geq 0$, and $A_{1}, \ldots, A_{k} \subseteq S$. Give a similar expression for

$$
\mathbb{P}\left[X_{n_{1}} \in A_{1}, X_{n_{2}} \in A_{2}, \ldots, X_{n_{k}} \in A_{k}\right]
$$

Exercise 1.4 [n-step transition probability] Consider the three-state Markov chain with transition probability P given by the following diagram

Prove that

$$
p_{a, a}^{(n)}=\frac{1}{5}+\left(\frac{1}{2}\right)^{n}\left(\frac{4}{5} \cos \frac{n \pi}{2}-\frac{2}{5} \sin \frac{n \pi}{2}\right) .
$$

Hint: What are the values of $p_{a, a}^{(0)}, p_{a, a}^{(1)}$, and $p_{a, a}^{(2)}$? Recall that $p_{a, a}^{(n)}=\delta^{a} P^{n} \delta^{a}$, where P is the representation of the transition probability as a 3×3 matrix. To find an expression for $\delta^{a} P^{n} \delta^{a}$, first compute the eigenvalues of P.

Exercise 1.5 [Construction of random variables] In this exercise, we rely on the existence of the Lebesgue measure. In particular, this provides us with the existence of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a random variable $U: \Omega \rightarrow \mathbb{R}$ that is uniformly distributed on $[0,1]$; denoted $U \sim \mathcal{U}([0,1])$. Our goal is to construct random variables with other distributions as well as sequences of independent random variables on this probability space.
(a) Let $F: \mathbb{R} \rightarrow[0,1]$ be an arbitary distribution function. Construct a random variable X with distribution function F.
Hint: Consider the generalized inverse of F, which is the mapping $F^{-1}:(0,1) \rightarrow \mathbb{R}$ defined by $F^{-1}(\alpha)=\inf \{x \in \mathbb{R}: F(x) \geq \alpha\}$ for $\alpha \in(0,1)$.
(b) Construct a sequence $\left(Y_{i}\right)_{i \geq 1}$ of independent, Bernoulli(1/2)-distributed random variables.

Hint: Consider the binary representation of U.
(c) Construct a sequence $\left(U_{i}\right)_{i \geq 1}$ of independent, $\mathcal{U}([0,1])$-distributed random variables.
(d) Let $\left(F_{i}\right)_{i \geq 1}$ be a sequence of arbitary distribution functions. Construct a sequence $\left(X_{i}\right)_{i \geq 1}$ of indenpendent random variables such that for every $i \geq 1, X_{i}$ has distribution function F_{i}.

Submission deadline: 10:15, Feburary 28.
Please submit your solutions as a hard copy before the beginning of the lecture.
Further information are available on:
https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/

