Applied Stochastic Processes

Exercise sheet 11

Quiz 11.1

(a) Let M be a Poisson point process on $\mathbb{R} \times[0,2]$ with intensity measure $\mu=$ Leb, and let $T:\left(x_{1}, x_{2}\right) \mapsto x_{1}$. Is $T \# N$ a Poisson point process on \mathbb{R} ? If yes, what is its intensity measure?
(b) Let M be a Poisson point process on \mathbb{R}^{2} with intensity measure $\mu=\operatorname{Leb}$, and let $T:\left(x_{1}, x_{2}\right) \mapsto$ x_{1}. Is $T \# N$ a Poisson point process on \mathbb{R} ? If yes, what is its intensity measure?
(c) Let M be a Poisson point process on $[0,2]^{2}$ with intensity measure $\mu=$ Leb, and let $T:\left(x_{1}, x_{2}\right) \mapsto x_{1} / 2$. Is $T \# N$ a Poisson point process on $[0,1]$? If yes, what is its intensity measure?
(d) Let M be a Poisson point process on \mathbb{R}^{2} with intensity measure $\mu=\operatorname{Leb}$, and let $T:\left(x_{1}, x_{2}\right) \mapsto$ $\left(2 x_{2}, 2 x_{1}\right)$. Is $T \# N$ a Poisson point process on \mathbb{R}^{2} ? If yes, what is its intensity measure?
(e) Let M be a Poisson point process on $\mathbb{R} \times[0, \infty)$ with intensity measure $\mu=$ Leb. Are the restricted process $M_{[0,1]^{2}}, M_{[0,2]^{2}}$, and $M_{[2,3]^{2}}$ Poisson point processes? If yes, what are their intensity measures? Are they independent?

Exercise 11.2 [Mapping]

Let M be a Poisson point process on \mathbb{R}^{d} with intensity measure $\mu=\lambda \cdot \operatorname{Leb}\left(\mathbb{R}^{d}\right)$, where $\lambda>0$. Let B_{r} the ball of radius r around the origin.
(a) Consider the map $T: \mathbb{R}^{d} \rightarrow[0, \infty)$ defined by $x \mapsto\|x\|_{2}:=\sqrt{x_{1}^{2}+\ldots+x_{d}^{2}}$. Determine the intensity measure of the Poisson point process $T \# M$.
(b) Prove that a.s.

$$
\lim _{r \rightarrow \infty} \frac{M\left(B_{r}\right)}{\left|B_{r}\right|}=\lambda
$$

where $\left|B_{r}\right|$ is the volume of B_{r}.
Hint: Consider a sequence $\left(r_{k}\right)_{k \geq 0}$ with $\left|B_{r_{k}}\right|=k$ and study $M\left(B_{r_{k}} \backslash B_{r_{k-1}}\right)$, the number of points in the annuli $\left(B_{r_{k}} \backslash B_{r_{k-1}}\right)_{k \geq 1}$.

Exercise 11.3 [Simple Poisson point process I]

A measure ν on (E, \mathcal{E}) is diffuse if

$$
\forall x \in E, \nu(\{x\})=0,
$$

and we call it simple if

$$
\forall x \in E, \nu(\{x\}) \leq 1
$$

Let M be a Poisson point process on (E, \mathcal{E}) with intensity measure μ. In this exercise, we show that

$$
\mu \text { is diffuse } \quad \Longrightarrow \quad \mathrm{M} \text { is simple a.s.. }
$$

From now on, assume that μ is diffuse, and let $\left(E_{i}\right)_{i \in \mathbb{N}}$ be a partition of E such that each E_{i} is measurable and satisfies $\mu\left(E_{i}\right)<\infty$.
(a) Show that the restricted measures μ_{1}, μ_{2}, \ldots are diffuse and that $M_{E_{1}}, M_{E_{2}}, \ldots$ are independent Poisson point processes with respective intensities $\mu_{E_{1}}, \mu_{E_{2}}, \ldots$.
(b) Show that for every $i \in \mathbb{N}, M_{E_{i}}$ is almost surely simple.

Hint: Using the explicit construction of $M_{E_{i}}$ from Proposition 6.10, prove that $\sum_{i=1}^{Z} \delta_{X_{i}}$ is almost surely simple.
(c) Deduce that M is almost surely simple.

Exercise 11.4 [Simple Poisson point process II]

(a) Let M be a Poisson point process on $\mathbb{R} \times[0, \infty)$ with intensity measure $\mu=$ Leb. Is the process almost surely simple?
(b) Let M be a Poisson point process on \mathbb{R} with intensity measure μ given by $\mu(B)=|B \cap \mathbb{Z}|$ for $B \in \mathcal{B}(\mathbb{R})$. Is the process almost surely simple?

Exercise 11.5 [Law of a point process]
Consider two point processes M and M^{\prime} on (E, \mathcal{E}), and denote their laws by P_{M} respectively $P_{M^{\prime}}$. Show that the following statements are equivalent:
(i) $P_{M}=P_{M^{\prime}}$
(ii) For all $A \in \mathcal{B}(\mathcal{M})$,

$$
\mathbb{P}[M \in A]=\mathbb{P}\left[M^{\prime} \in A\right]
$$

(iii) For all $k \geq 1, B_{1}, \ldots, B_{k} \in \mathcal{E}$, and $n_{1}, \ldots, n_{k} \in \mathbb{N}$,

$$
\mathbb{P}\left[M\left(B_{1}\right)=n_{1}, \ldots, M\left(B_{k}\right)=n_{k}\right]=\mathbb{P}\left[M^{\prime}\left(B_{1}\right)=n_{1}, \ldots, M^{\prime}\left(B_{k}\right)=n_{k}\right]
$$

(iv) For all $k \geq 1, C_{1}, \ldots, C_{k} \in \mathcal{E}$ disjoint, and $n_{1}, \ldots, n_{k} \in \mathbb{N}$,

$$
\mathbb{P}\left[M\left(C_{1}\right)=n_{1}, \ldots, M\left(C_{k}\right)=n_{k}\right]=\mathbb{P}\left[M^{\prime}\left(C_{1}\right)=n_{1}, \ldots, M^{\prime}\left(C_{k}\right)=n_{k}\right]
$$

Submission deadline: 10:15, May 16.
Please submit your solutions as a hard copy before the beginning of the lecture.
Further information are available on:
https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/

