Applied Stochastic Processes

Exercise sheet 12

Quiz 12.1 [Poisson point processes on product space]
Let M be a Poisson point process on (E, \mathcal{E}) with (σ-finite) intensity measure μ and let M^{\prime} be a Poisson point process on (F, \mathcal{F}) with (σ-finite) intensity measure ν. Define N via the product measure $N(\omega):=M(\omega) \otimes M^{\prime}(\omega)$ on $(E \times F, \mathcal{E} \otimes \mathcal{F})$.
(a) Is N a point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$?
(b) Is N a Poisson point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$? If yes, what is its intensity measure?

Let M be a Poisson point process on (E, \mathcal{E}) with (σ-finite) intensity measure μ.
(c) Let ν be a probability measure on (F, \mathcal{F}). Can we construct a Poisson point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$ with intensity measure $\mu \otimes \nu$ by marking the process M ?
(d) Let ν be a finite measure on (F, \mathcal{F}). Can we use a similar construction as in (c) to construct a Poisson point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$ with intensity measure $\mu \otimes \nu$?

Exercise 12.2 [Poisson Boolean percolation]

Let $M=\sum_{i} \delta_{X_{i}}$ be a Poisson point process on \mathbb{R}^{d} with intensity measure $\mu=\operatorname{Leb}\left(\mathbb{R}^{d}\right)$. Let us consider $\left(R_{i}\right)_{i}$ a sequence of i.i.d. positive random variables with law ρ, and independent of M. We define the occupied set by $\mathcal{O}=\bigcup_{i} B\left(X_{i}, R_{i}\right)$, where $B(x, r) \subset \mathbb{R}^{d}$ is the open ball of center x and radius r.
(a) Let M_{0} the number of balls $B\left(X_{i}, R_{i}\right)$ which contain the origin of \mathbb{R}^{d}. Show that M_{0} is a well defined random variable with distribution Poisson $\left(\int_{\mathbb{R}^{d}} \int_{|x|}^{\infty} \rho(d r) \mu(d x)\right)$.
Hint: Use the marking theorem.
(b) Show that the event $\left\{\mathcal{O}=\mathbb{R}^{d}\right\}$ is measurable and that $\mathbb{P}\left[\mathcal{O}=\mathbb{R}^{d}\right]=1$ if and only if $\int_{0}^{\infty} r^{d} \rho(d r)=\infty$

Exercise 12.3 [Laplace functional]

Let M be a Poisson point process on (E, \mathcal{E}) with intensity measure μ. Recall that the Laplace functional \mathcal{L}_{M} of N is given by

$$
\mathcal{L}_{M}(u)=\mathbb{E}\left[\exp \left(-\int_{E} u(x) M(d x)\right)\right] .
$$

for every $u: E \rightarrow \mathbb{R}_{+}$measurable.
(a) Let $B \in \mathcal{E}$. Show that if $\mu(B)<\infty$, then

$$
\mu(B)=-\left.\frac{d}{d t} \mathcal{L}_{M}\left(t 1_{B}\right)\right|_{t=0}
$$

(b) Let $B \in \mathcal{E}$. We no longer assume that $\mu(B)<\infty$. Show that

$$
\mathbb{P}[M(B)=0]=\lim _{t \rightarrow \infty} \mathcal{L}_{M}\left(t 1_{B}\right)
$$

Submission deadline: 10:15, May 23.
Please submit your solutions as a hard copy before the beginning of the lecture.
Further information are available on:
https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/

