ETH Zürich, FS 2023 D-MATH Prof. Vincent Tassion

Applied Stochastic Processes

Exercise sheet 14

Quiz 14.1

Let $(N_t^1)_{t\geq 0}$, $(N_t^2)_{t\geq 0}$, and $(N_t^3)_{t\geq 0}$ be independent Poisson processes with rate $\lambda > 0$.

- (a) Is $(N_t)_{t\geq 0}$ defined by $N_t = N_t^1 + N_t^2 + N_t^3$ a Poisson process? If yes, what is its rate?
- (b) What is the probability that the k'th jump time of $(N_t)_{t\geq 0}$ is a jump time of $(N_t^1)_{t\geq 0}$?
- (c) Is $(N'_t)_{t>0}$ defined by $N'_t = 2 \cdot N^1_t$ a Poisson process? If yes, what is its rate?

Exercise 14.2 ^(*)[Compound Poisson process]

Let $(N_t)_{t\geq 0}$ be a Poisson process with rate $\lambda > 0$ and $(X_k)_{k\in\mathbb{N}}$ a sequence of real-valued i.i.d. random variables with common distribution μ such that $(N_t)_{t\geq 0}$ and $(X_k)_{k\in\mathbb{N}}$ are independent. Define the process $(Z_t)_{t\geq 0}$ by

$$Z_t := \sum_{k=1}^{N_t} X_k, \quad t \ge 0.$$

 $(Z_t)_{t>0}$ is called a compound Poisson process with rate λ and jump size distribution μ .

- (a) For t > 0, determine the characteristic function of Z_t .
- (b) Prove that $(Z_t)_{t>0}$ has stationary and independent increments.
- (c) Show that if $\mathbb{P}[X_i = 1] = 1 \mathbb{P}[X_i = 0] = p$, then $(Z_t)_{t \ge 0}$ is a Poisson process with rate λp .

Exercise 14.3 [Largest gap in a Poisson process]

Let $(N_t)_{t\geq 0}$ be a Poisson process with intensity $\lambda > 0$. The largest gap up to time t is defined as

$$L_t = \max_{k \ge 1} (S_k \wedge t - S_{k-1} \wedge t)$$

(a) Let $\varepsilon > 0$. Show that there exists almost surely some $n_0 \ge 1$ such that for all $n \ge n_0$,

$$\max_{1 \le k \le n} T_k \le \frac{1+\varepsilon}{\lambda} \log(n/\lambda),$$

where the T_1, \ldots, T_n denote the inter-arrival times of the process.

Hint: Use Borel-Cantelli's lemma.

(b) Show that there exists almost surely some $t_0 \ge 0$ such that for all $t > t_0$,

$$N_t + 1 \le (1 + \varepsilon)t\lambda.$$

(c) Conclude that almost surely

$$\limsup_{t \to \infty} \frac{L_t}{\log t} \le \lambda^{-1}.$$

Submission deadline: No submission.

Further information are available on: https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/