Applied Stochastic Processes

Exercise sheet 2

Quiz $2.1[\mathrm{MC}(\mu, P)$ and SRW]
Let $x, y, z \in S$ and $n \geq 0$. Consider $X \sim \operatorname{MC}(\mu, P)$ and express the following probabilities in terms of μ and P :
(a) $\mathbf{P}_{x}\left[X_{1}=y, X_{0}=x\right]$ and $\mathbf{P}_{x}\left[X_{1}=x, X_{0}=y\right]$;
(b) $\mathbf{P}_{x}\left[X_{n+2}=z, X_{n+1}=y \mid X_{n}=x\right]$ and $\mathbf{P}_{x}\left[X_{n+2}=z, X_{n+1}=y, X_{n}=x\right]$.

Consider the SRW on \mathbb{Z} with transition probability P given by $p_{i j}=\frac{1}{2} \cdot \mathbb{1}_{|i-j|=1}$. Determine the following probabilities:
(c) $\mathbf{P}_{1}\left[X_{1}=3\right], \mathbf{P}_{1}\left[X_{2}=3\right], \mathbf{P}_{1}\left[X_{3}=3\right]$, and $\mathbf{P}_{1}\left[X_{4}=3\right]$;
(d) $\mathbf{P}_{0}\left[X_{n}=0\right]$.

Exercise 2.2 [Chapman-Kolmogorov]

Consider the SRW on \mathbb{Z}. Recall that the transition probability P is given by $p_{i j}=\frac{1}{2} \cdot \mathbb{1}_{|i-j|=1}$.
(a) Show that for every $x \in \mathbb{Z}$ and for every $n \geq 0$,

$$
p_{0 x}^{(2 n)} \leq \sqrt{\sum_{y \in S}\left(p_{0 y}^{(n)}\right)^{2}} \cdot \sqrt{\sum_{y \in S}\left(p_{y x}^{(n)}\right)^{2}} .
$$

(b) Deduce that for every $x \in \mathbb{Z}$ and for every $n \geq 0$,

$$
p_{0 x}^{(2 n)} \leq p_{00}^{(2 n)}
$$

Exercise 2.3 [Simple Markov property I]

Consider the SRW on \mathbb{Z}. Show that the two random variables

$$
Z:=\sum_{n=0}^{10} \mathbb{1}_{X_{n}=0} \quad \text { and } \quad Z^{\prime}:=\sum_{n=10}^{20} \mathbb{1}_{X_{n}=X_{10}}
$$

have the same distribution and are independent under \mathbf{P}_{0}.

Exercise 2.4 [Simple Markov property II]

Consider the SRW on \mathbb{Z}. For $N \geq 0$, we define the hitting time $H_{-N, N}:=\inf \left\{n \geq 0: X_{n} \in\right.$ $\{-N, N\}\}$.
(a) Show that for every $k \geq 0$,

$$
\mathbf{P}_{0}\left[H_{-N, N}>k \cdot N\right] \leq\left(1-2^{-N}\right)^{k}
$$

Deduce that $\mathbf{E}_{0}\left[H_{-N, N}\right] \leq N \cdot 2^{N}$.
(b) Show that $\mathbf{E}_{x}\left[H_{-N, N}\right]<\infty$ for all $x \in\{-N, \ldots, N\}$.
(c) Prove that $\mathbf{E}_{0}\left[H_{-N, N}\right]=N^{2}$.

Hint: Consider the function $f(x)=\mathbf{E}_{x}\left[H_{-N, N}\right]$ for $x \in\{-N, \ldots, N\}$.

Exercise 2.5 [Complements I]

(a) [Existence theorem] Let S be finite or countable. Show that there exists a distribution μ on S with $\mu(x)>0$ for every $x \in S$.
(b) [Proposition 1.2] Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of random variables with values in S satisfying the 1-step Markov property and homogeneity. Show that there exist a distribution μ and a transition probability P such that

$$
X \sim \operatorname{MC}(\mu, P)
$$

We note that (b) establishes the converse of Proposition 1.2, thereby showing that the 1 -step Markov property and homogeneity characterize Markov chains.

Exercise 2.6 [Complements II: Strong Markov property]

(a) Show that Z is \mathcal{F}_{T}-measurable if and only if $Z \cdot \mathbb{1}_{T=n}$ is \mathcal{F}_{n}-measurable for every $n \in \mathbb{N}$.

Let μ be a probability measure on S, let T be an $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-stopping time and let $x \in S$. For $f: S^{\mathbb{N}} \rightarrow \mathbb{R}$ measurable bounded and $Z \mathcal{F}_{T}$-measurable bounded, the strong Markov property gives

$$
\mathbf{E}_{\mu}\left[f\left(\left(X_{T+n}\right)_{n \geq 0}\right) \cdot Z \mid T<\infty, X_{T}=x\right]=\mathbf{E}_{x}\left[f\left(\left(X_{n}\right)_{n \geq 0}\right)\right] \cdot \mathbf{E}_{\mu}\left[Z \mid T<\infty, X_{T}=x\right]
$$

(b) Assume that $\mathbf{P}_{\mu}[T<\infty]=1$. Show that

$$
\mathbf{E}_{\mu}\left[f\left(\left(X_{T+n}\right)_{n \geq 0}\right) \cdot Z \mid X_{T}=x\right]=\mathbf{E}_{x}\left[f\left(\left(X_{n}\right)_{n \geq 0}\right)\right] \cdot \mathbf{E}_{\mu}\left[Z \mid X_{T}=x\right]
$$

Exercise 2.7 [Exponential tail of exit time from a finite set]

Comment: This exercise is a generalization of the result in Exercise 2.4 (a).
Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain with transition probabilities $\left(p_{x, y}\right)_{x, y \in S}$. Let $C \subseteq S$ such that $S \backslash C$ is finite. Define $n(x):=\min \left\{n \geq 0: \mathrm{P}_{x}\left[X_{n} \in C\right]>0\right\}$, and suppose that $n(x)<\infty$ for all $x \in S$. Let

$$
\begin{aligned}
\tau_{C} & =\inf \left\{n \geq 0: X_{n} \in C\right\}, \\
\varepsilon & =\min \left\{\mathrm{P}_{x}\left[X_{n(x)} \in C\right]: x \in S\right\}, \\
N & =\max \{n(x): x \in S\} .
\end{aligned}
$$

Show that for all $k \in \mathbb{N}$ and for every $x \in S$,

$$
\mathrm{P}_{x}\left[\tau_{C}>k N\right] \leq(1-\varepsilon)^{k}
$$

Submission deadline: 10:15, March 7.
Please submit your solutions as a hard copy before the beginning of the lecture.
Further information are available on:
https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/

