Applied Stochastic Processes

Exercise sheet 3

Quiz 3.1 [Quiz]

Let $x, y \in S$. For $x \in S$, we recall the definitions $H_{x}=\min \left\{n \geq 1: X_{n}=x\right\}$,

$$
V_{x}=\sum_{k \geq 1} \mathbf{1}_{X_{k}=x}, \quad \text { and } \quad V_{x}^{(n)}=\sum_{k=1}^{n} \mathbf{1}_{X_{k}=x}
$$

In addition, we define $\widetilde{H_{x}}=\min \left\{n \geq 0: X_{n}=x\right\}$, and

$$
\widetilde{V_{x}}=\sum_{k \geq 0} \mathbf{1}_{X_{k}=x}
$$

(a) What can you say about $\mathbf{P}_{y}\left[\widetilde{H_{x}}<\infty\right]$ in comparison with $\mathbf{P}_{y}\left[H_{x}<\infty\right]$?
(b) What can you say about $\mathbf{E}_{y}\left[\widetilde{V_{x}}\right]$ in comparison with $\mathbf{E}_{y}\left[V_{x}\right]$?

Let $y \neq x$.
(c) Why is it true that

$$
\begin{equation*}
\mathbf{E}_{y}\left[V_{x}\right]=\mathbf{P}_{y}\left[H_{x}<\infty\right] \cdot\left(1+\mathbf{E}_{x}\left[V_{x}\right]\right) ? \tag{1}
\end{equation*}
$$

(d) For $n \geq 1$, compare $\mathbf{E}_{y}\left[V_{x}^{(n)}\right]$ and $\mathbf{E}_{y}\left[V_{x}^{(n+1)}\right]$.
(e) What is

$$
\lim _{n \rightarrow \infty} \mathbf{E}_{y}\left[V_{x}^{(n)}\right] ?
$$

(f) Does (1) hold true when we replace V_{x} by $V_{x}^{(n)}$ on both sides of the equation?
(g) Is it possible that $\mathbf{P}_{x}\left[V_{x}=\infty\right]=1 / 2$?
(h) Is it possible that $\mathbf{P}_{x}\left[V_{x}=2\right]=1 / 8$?
(i) Is it possible that $\mathbf{P}_{x}\left[V_{x}=2\right]=1$?

Recall the definition of the sequence $\left(T_{i}\right)_{i \geq 1}$ of inter-visit times at x.
(j) Under \mathbf{P}_{x}, what is

$$
\lim _{n \rightarrow \infty} \frac{T_{5}+\ldots+T_{n}}{n} ?
$$

(k) What is

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{x x}^{(k)} ?
$$

Exercise 3.2 [Biased and reflected random walk]

Let $\alpha \in(0,1)$. We consider the biased random walk X on \mathbb{Z}, i.e. the Markov chain with state space \mathbb{Z} and transition probability given by

$$
p_{x, x+1}=\alpha, \quad \text { and } \quad p_{x, x-1}=1-\alpha \quad \text { for } x \in \mathbb{Z}
$$

(a) Let $x \in \mathbb{Z}$. Show that x is recurrent if $\alpha=1 / 2$.

Hint: Deduce from Exercise 2.2 (b) that $\sum_{n \geq 0} p_{x x}^{(n)}=\infty$, and apply the Dichotomy Theorem.
(b) Let $x \in \mathbb{Z}$. Show that x is transient if $\alpha \neq 1 / 2$.

Hint: Use the strong law of large numbers.
We now consider the reflected random walk Y on \mathbb{N}, i.e. the Markov chain with state space \mathbb{N} and transition probability given by $p_{0,1}=1$,

$$
p_{x, x+1}=\alpha, \quad \text { and } \quad p_{x, x-1}=1-\alpha \quad \text { for } x \geq 1
$$

(c) Show that 0 is recurrent if $\alpha \leq 1 / 2$.

Hint: Construct a coupling with the biased random walk X.
(d) Show that 0 is positive recurrent if $\alpha<1 / 2$.
(e) Show that 0 is transient if $\alpha>1 / 2$.

As a direct consequence of the Classification of States Theorem (next week), it will follow that any state x is recurrent if and only if $0<\alpha \leq 1 / 2$.

Exercise 3.3 [SRW on a d-regular tree]

Let $d \geq 3$. In this exercise, we consider the simple random walk X on the d-regular tree $\mathbf{T}_{d}=(V, E)$, i.e. the infinite tree with d edges at each vertex. This is the Markov chain with state space V and transition probability given by

$$
p_{x y}=\frac{1}{d} \cdot \mathbf{1}_{\{x, y\} \in E} .
$$

Show that every state $x \in V$ is transient.
Hint: Under \mathbf{P}_{x}, consider the distance of X_{n} from the starting point x.

Exercise 3.4 [Reflection principle for the SRW on \mathbb{Z}]

Consider the SRW on \mathbb{Z}, i.e. the Markov chain with transition probability given by $p_{i j}=\frac{1}{2} \cdot \mathbb{1}_{|i-j|=1}$. The goal of this exercise is to prove that for $n \geq 0$ even and $a \geq 1$ odd,

$$
\begin{equation*}
\mathbf{P}_{0}\left[\left(\max _{0 \leq m \leq n} X_{m}\right) \geq a\right]=\mathbf{P}_{0}\left[\left|X_{n}\right| \geq a\right] \tag{2}
\end{equation*}
$$

(a) Show that

$$
\mathbf{P}_{0}\left[\left(\max _{0 \leq m \leq n} X_{m}\right) \geq a\right]=\mathbf{P}_{0}\left[X_{n}>a\right]+\mathbf{P}_{0}\left[H_{a} \leq n, X_{n}<a\right]
$$

(b) Use the strong Markov property to show that

$$
\mathbf{P}_{0}\left[H_{a} \leq n, X_{n}<a\right]=\mathbf{P}_{0}\left[X_{n}>a\right]
$$

and conclude that (2) holds.

Exercise 3.5 [Snakes and ladders]

A simple game of 'snakes and ladders' is played on a board of nine squares.

At each turn a player tosses a fair coin and advances one or two places according to whether the coin lands heads or tails. If you land at the foot of a ladder you climb to the top, but if you land at the head of a snake you slide down to the tail.
(a) How many turns on average does it take to complete the game?

Hint: Call $k_{i}=\mathbf{E}_{i}\left[H_{9}\right]$ and find some relations between the k_{i} for $i \in\{1, \ldots, 9\}$.
(b) What is the probability that a player who has reached the middle square will complete the game without slipping back to square 1 ?

Submission deadline: 10:15, March 14.
Please submit your solutions as a hard copy before the beginning of the lecture.
Further information are available on:
https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/ document

