Applied Stochastic Processes

Exercise sheet 5

Quiz 5.1 [Continuation of Quiz 4.2]

For $0 \leq \varepsilon \leq \frac{1}{3}$, consider the Markov chain on $S=\{a, b, c, d\}$ with transition probability given by the following diagram.

Which of the following statements are correct (possibly depending on the value of ε)?
(a) $\pi=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ is reversible for the Markov chain.
(b) $\pi=\left(\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right)$ is reversible for the Markov chain.
(c) $\pi=\left(\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right)$ is stationary for the Markov chain.
(d) $\pi=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{2}{5}\right)$ is stationary for the Markov chain.

Quiz 5.2
Let S be finite or countable. Let P be irreducible.
(a) Let $x \in S$. Is it possible that

$$
\sum_{y \in S} \frac{1}{\mathbf{E}_{x}\left[H_{y}\right]}=2 ?
$$

(b) Is it possible that

$$
\sum_{y \in S} \frac{1}{\mathbf{E}_{y}\left[H_{y}\right]}=2 ?
$$

(c) Assume S finite. Does there always exist a unique stationary distribution?

Let $\left(X_{n}\right)_{n \geq 0}$ be i.i.d. random variables with values in S satisfying $\mathbf{P}\left[X_{0}=x\right]>0$ for all $x \in S$.
(d) Show that the Markov chain $\left(X_{n}\right)_{n \geq 0}$ is irreducible and positive recurrent.

Exercise 5.3 [Two-state Markov chain]

Let $p, q \in[0,1]$. Consider the two state Markov chain on $S=\{1,2\}$ with transition probability P given by

$$
p_{11}=p, \quad p_{12}=1-p, \quad p_{22}=q, \quad \text { and } \quad p_{21}=1-q .
$$

Prove that a distribution π is stationary for P if and only if it is reversible for P.

Exercise 5.4 [Biased random walk on $\{1, \ldots, N\}$]
Let $\alpha \in[0,1]$. Consider the biased random walk on $S=\{1, \ldots, N\}$ with transition probability given by

$$
p_{i j}= \begin{cases}\alpha & \text { if } j=i+1(\bmod N) \\ 1-\alpha & \text { if } j=i-1(\bmod N)\end{cases}
$$

(a) Show that π, defined by $\pi(i)=1 / N, \forall i \in\{1, \ldots, N\}$, is the unique stationary distribution for the biased random walk.
(b) Show that the biased random walk is reversible if and only if $\alpha=1 / 2$.

Exercise 5.5 [Lazy Markov chain]

Let $\delta \in(0,1)$, and let P be an irreducible transition probability. Define for all $x, y \in S$,

$$
\widetilde{p}_{x y}=\delta \cdot \mathbb{1}_{x=y}+(1-\delta) \cdot p_{x y}
$$

(a) Show that $\widetilde{P}=\left(\widetilde{p}_{x y}\right)_{x, y \in S}$ is a transition probability.
(b) Prove that \widetilde{P} is irreducible and aperiodic.
(c) Assume that P positive recurrent. Prove that \widetilde{P} is positive recurrent. What is the stationary distribution for \widetilde{P} ?

Exercise 5.6 [Time-reversed Markov chain]

Let S be finite or countable. Consider a transition probability $P=\left(p_{x y}\right)_{x, y \in S}$ and a stationary distribution π.
(a) Define $\hat{P}=\left(\hat{p}_{x y}\right)_{x, y \in S}$ by

$$
\hat{p}_{x y}= \begin{cases}\frac{\pi_{y} p_{y x}}{\pi_{x}} & \text { if } \pi_{x}>0 \\ \mathbb{1}_{x=y} & \text { if } \pi_{x}=0 .\end{cases}
$$

Show that \hat{P} is a transition probability. $\mathrm{MC}(\pi, \hat{P})$ is called the time-reversal of $\mathrm{MC}(\pi, P)$.
(b) Recall that a transition probability P can be represented by a linear operator $P: \mathrm{L}^{\infty}(S) \rightarrow$ $\mathrm{L}^{\infty}(S)$, defined by

$$
(P f)(x)=\sum_{y \in S} p_{x y} f(y)
$$

Define an inner product $\langle\cdot, \cdot\rangle_{\pi}$ on $\mathrm{L}^{\infty}(S)$ by

$$
\langle f, g\rangle_{\pi}:=\sum_{x \in S} f(x) g(x) \pi_{x}
$$

Show that the operators P and \hat{P} are adjoint, i.e. $\langle P f, g\rangle_{\pi}=\langle f, \hat{P} g\rangle_{\pi}$ for every $f, g \in \mathrm{~L}^{\infty}(S)$.
(c) Show that the operator P is self-adjoint if and only if π is reversible (for P).

Submission deadline: 10:15, March 28.
Please submit your solutions as a hard copy before the beginning of the lecture.
Further information are available on:
https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/ document

