Applied Stochastic Processes

Exercise sheet 5

Quiz 5.1 [Continuation of Quiz 4.2]

For $0 \le \varepsilon \le \frac{1}{3}$, consider the Markov chain on $S = \{a, b, c, d\}$ with transition probability given by the following diagram.

Which of the following statements are correct (possibly depending on the value of ε)?

- (a) $\pi = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ is reversible for the Markov chain.
- (b) $\pi=(\frac{1}{8},\frac{1}{8},\frac{1}{4},\frac{1}{2})$ is reversible for the Markov chain.
- (c) $\pi = (\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2})$ is stationary for the Markov chain.
- (d) $\pi = (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{2}{5})$ is stationary for the Markov chain.

Quiz 5.2

Let S be finite or countable. Let P be irreducible.

(a) Let $x \in S$. Is it possible that

$$\sum_{y \in S} \frac{1}{\mathbf{E}_x[H_y]} = 2?$$

(b) Is it possible that

$$\sum_{y \in S} \frac{1}{\mathbf{E}_y[H_y]} = 2?$$

(c) Assume S finite. Does there always exist a unique stationary distribution?

Let $(X_n)_{n\geq 0}$ be i.i.d. random variables with values in S satisfying $\mathbf{P}[X_0 = x] > 0$ for all $x \in S$.

(d) Show that the Markov chain $(X_n)_{n\geq 0}$ is irreducible and positive recurrent.

Exercise 5.3 [Two-state Markov chain]

Let $p, q \in [0, 1]$. Consider the two state Markov chain on $S = \{1, 2\}$ with transition probability P given by

$$p_{11} = p$$
, $p_{12} = 1 - p$, $p_{22} = q$, and $p_{21} = 1 - q$.

Prove that a distribution π is stationary for P if and only if it is reversible for P.

Exercise 5.4 [Biased random walk on $\{1, \ldots, N\}$]

Let $\alpha \in [0,1]$. Consider the biased random walk on $S = \{1, \ldots, N\}$ with transition probability given by

$$p_{ij} = \begin{cases} \alpha & \text{if } j = i + 1 \pmod{N}, \\ 1 - \alpha & \text{if } j = i - 1 \pmod{N}. \end{cases}$$

- (a) Show that π , defined by $\pi(i) = 1/N, \forall i \in \{1, ..., N\}$, is the unique stationary distribution for the biased random walk.
- (b) Show that the biased random walk is reversible if and only if $\alpha = 1/2$.

Exercise 5.5 [Lazy Markov chain]

Let $\delta \in (0, 1)$, and let P be an irreducible transition probability. Define for all $x, y \in S$,

$$\widetilde{p}_{xy} = \delta \cdot \mathbb{1}_{x=y} + (1-\delta) \cdot p_{xy}$$

- (a) Show that $\widetilde{P} = (\widetilde{p}_{xy})_{x,y \in S}$ is a transition probability.
- (b) Prove that \widetilde{P} is irreducible and aperiodic.
- (c) Assume that P positive recurrent. Prove that \tilde{P} is positive recurrent. What is the stationary distribution for \tilde{P} ?

Exercise 5.6 [Time-reversed Markov chain]

Let S be finite or countable. Consider a transition probability $P = (p_{xy})_{x,y \in S}$ and a stationary distribution π .

(a) Define
$$P = (\hat{p}_{xy})_{x,y \in S}$$
 by

$$\hat{p}_{xy} = \begin{cases} \frac{\pi_y p_{yx}}{\pi_x} & \text{if } \pi_x > 0, \\ \mathbbm{1}_{x=y} & \text{if } \pi_x = 0. \end{cases}$$

Show that \hat{P} is a transition probability. $MC(\pi, \hat{P})$ is called the *time-reversal* of $MC(\pi, P)$.

(b) Recall that a transition probability P can be represented by a linear operator $P: L^{\infty}(S) \to L^{\infty}(S)$, defined by

$$(Pf)(x) = \sum_{y \in S} p_{xy} f(y).$$

Define an inner product $\langle \cdot, \cdot \rangle_{\pi}$ on $L^{\infty}(S)$ by

$$\langle f,g \rangle_{\pi} := \sum_{x \in S} f(x)g(x)\pi_x.$$

Show that the operators P and \hat{P} are adjoint, i.e. $\langle Pf, g \rangle_{\pi} = \langle f, \hat{P}g \rangle_{\pi}$ for every $f, g \in L^{\infty}(S)$.

(c) Show that the operator P is self-adjoint if and only if π is reversible (for P).

Submission deadline: 10:15, March 28.

Please submit your solutions as a hard copy before the beginning of the lecture. Further information are available on:

 $https://metaphor.ethz.ch/x/2023/fs/401\text{-}3602\text{-}00L/\ \mathrm{document}$