Applied Stochastic Processes

Exercise sheet 6

Quiz 6.1

(a) Give an example of an irreducible transition probability P with period 5 .
(b) Consider the transition pobability represented by the following directed graph. For each $x \in\{a, b, c, d, e, f\}$, what is the period of x ?

(c) Consider the biased random walk $X=\left(X_{n}\right)_{n \geq 0}$ on \mathbb{Z} with parameter $\alpha \in(0,1)$ (see Exercise 3.2 for the definition of P). What is

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{0}\left[X_{n}=0\right] ?
$$

Exercise 6.2 [Convergence to equilibrium I]
Consider the three-state Markov chain X represented by the following directed graph. What is

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{b}\left[X_{n}=b\right] ?
$$

Exercise 6.3 [Convergence to equilibrium II]

Consider the four-state Markov chain $X=\left(X_{n}\right)_{n \geq 0}$ represented by the following directed graph. What is

$$
\lim _{n \rightarrow \infty} \mathbf{P}_{c}\left[X_{2 n}=a\right] ?
$$

Hint: Determine the transition probability of the Markov chain $\left(X_{2 n}\right)_{n \geq 0}$ with $X_{0}=c$.

Exercise 6.4 [Hardcore model I]

Recall the hardcore model from Section 3.9. In this exercise, we consider the hardcore model on a 2 x 2 square grid. Denoting the vertices by $V=\{a, b, c, d\}$, this is the graph $G=(V, E)$ with edge set

$$
E=\{\{a, b\},\{b, c\},\{c, d\},\{d, a\}\}
$$

(a) Identify all admissible configurations ξ. How many are there?
(b) Determine the transition probability P and represent it as a directed graph.
(c) Deduce that P is aperiodic and irreducible.

Exercise 6.5 [Hardcore model II]

Recall the hardcore model from Section 3.9. This is the Markov chain $X=\left(X_{n}\right)_{n \geq 0}$ on

$$
S=\left\{\xi \in\{0,1\}^{V}: \xi \text { is admissible }\right\}
$$

with transition probability P as defined in the proof of Proposition 3.17.
(a) Show that P is aperiodic.
(b) Show that P is irreducible.

In Section 3.9, this Markov chain was used to simulate a uniform random variable in S. Now, we fix $0 \leq k \leq 32$, and consider the set of admissible configurations with exactly k particles

$$
S_{k}:=\left\{\xi \in S: \sum_{v \in V} \xi(v)=k\right\}
$$

(c) How could we simulate Z, a uniform random variable in S_{k} ?

Submission deadline: 10:15, April 4.
Please submit your solutions as a hard copy before the beginning of the lecture.
Further information are available on:
https://metaphor.ethz.ch/x/2023/fs/401-3602-00L/ document

