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Solution 1.1 [Markov chains]

i) (a) The stochastic process (Xn)n≥1 takes values in S = N ∪ {∞}. Here, we denote by ∞
the state representing that no six has been rolled so far.

(b) X is a Markov chain, as shown in (c).
(c) We determine the initial distribution µ and a transition probability P such that X ∼

MC(µ, P ). The transition probability P = (pij)i,j∈S is given by

pij =


1
6 if j = 0,
5
6 if j = i+ 1 or j = i =∞,
0 otherwise.

Indeed, we have Xn = 0 if and only if ξn = 6, which happens with probability 1/6.
If ξn 6= 6, which happens with probability 5/6, we have Xn = Xn−1 + 1 (respectively
Xn = Xn−1 =∞). The initial distribution of X1 is µ = 1/6 ·δ0 +5/6 ·δ∞. Alternatively,
we can also see the process as starting at X0 =∞, i.e. having µ = δ∞.

(d) We can represent P by the following weighted graph.
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(e) For every n ≥ 1, we have

p(n)
∞∞ =

(
5
6

)n
and p

(n)
i∞ = 0, ∀i ∈ N.

For every j ∈ N, i ∈ N ∪ {∞}, and every n ≥ 1, we have

p
(n)
ij =

(
5
6

)n
if n = j − i,

p
(n)
ij = 1

6 ·
(

5
6

)j
if j ≤ n− 1.

ii) (a) The stochastic process (Xn)n≥1 takes values in S = {1, . . . , 6}.
(b) X is a Markov chain, as shown in (c).
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(c) We determine the initial distribution µ and a transition probability P such that X ∼
MC(µ, P ). The transition probability P = (pij)i,j∈S is given by

pij =


0 if j < i,
i
6 if j = i,
1
6 if j > i.

Indeed, if Xn−1 = i, then we have Xn = i if and only if ξn ≤ i, which happens
with probability i/6, and we have Xn = j for j > i if and only if ξn = j, which
happens with probability 1/6. The initial distribution of X1 is uniform on S, i.e.
µ = 1/6 ·

(
δ1 + . . .+ δ6).

(d) We can represent P by the following weighted graph.
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Here, all weights on the directed edges (i, j) with j > i are equal to 1/6.
(e) For every i, j ∈ {1, . . . , 6} and every n ≥ 1, we have

p
(n)
ij = 0 if j < i,

p
(n)
ij =

(
i

6

)n
if j = i,

p
(n)
ij =

(
j

6

)n
−
(
j − 1

6

)n
if j > i.

iii) (a) The stochastic process (Xn)n≥1 takes values in S = {1, . . . , 6}.
(b) X is a not Markov chain. We note that

{X2 = 1, X3 = 6} = {X2 = 1, X3 = 6, X4 = 6} = {ξ1 = 1, ξ2 = 1, ξ3 = 6},

and so
P[X2 = 1, X3 = 6] = P[X2 = 1, X3 = 6, X4 = 6] = (1/6)3.

If X ∼ MC(µ, P ) for some initial distribution µ and transition probability P , then it
would follow from Definition 1.3 that

p66 = P[X2 = 1, X3 = 6, X4 = 6]
P[X2 = 1, X3 = 6] = 1, thus p(n)

66 = 1, ∀n ≥ 1.

But this contradicts the definition of X since the stochastic process can leave the state 6
with positive probability.

iv) (a) The stochastic process (Xn)n≥1 takes values in S = {1, . . . , 6}.

2 / 7



Applied Stochastic Processes, FS 2023
D-MATH Solution sheet 1

(b) X is a Markov chain, as shown in (c).
(c) We determine the initial distribution µ and a transition probability P such that X ∼

MC(µ, P ). The transition probability P = (pij)i,j∈S is given by

pij =


6−i

6 if j = i+ 1,
i
6 if j = i,

0 otherwise.

Indeed, if Xn−1 = i, then we have Xn = i+ 1 if and only if ξn takes a new value, which
happens with probability (6− i)/6, and we have Xn = i if and only if ξn takes no new
value, which happens with probability i/6. The initial distribution of X1 is µ = δ1.

(d) We can represent P by the following weighted graph.
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(e) In this case, it requires a bit more work to determine the n-step transition probabilities.
We proceed by diagonalizing the matrix P of the transition probability, given by

P =


1/6 5/6 0 0 0 0
0 2/6 4/6 0 0 0
0 0 3/6 3/6 0 0
0 0 0 4/6 2/6 0
0 0 0 0 5/6 1/6
0 0 0 0 0 6/6

 .

Since it is an upper triangular matrix, its eigenvalues are equal to the diagonal entries. By
computing the associated eigenvectors, we obtain the matrix Q with the right eigenvectors
as columns, given by

Q =


1 5 10 10 5 1
0 1 4 6 4 1
0 0 1 3 3 1
0 0 0 1 2 1
0 0 0 0 1 1
0 0 0 0 0 1

 with Q−1 =


1 −5 10 −10 5 −1
0 1 −4 6 −4 1
0 0 1 −3 3 −1
0 0 0 1 −2 1
0 0 0 0 1 −1
0 0 0 0 0 1


Thus,

Pn = Q ·


(1/6)n 0 0 0 0 0

0 (2/6)n 0 0 0 0
0 0 (3/6)n 0 0 0
0 0 0 (4/6)n 0 0
0 0 0 0 (5/6)n 0
0 0 0 0 0 (6/6)n

 ·Q
−1,

which allows to deduce all transition probabilities.
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Solution 1.2 [Deterministic Markov chains]

(a) A deterministic sequence (xn)n≥0 is a Markov chain if and only if there exists a function
Φ : S → S such that for all n ≥ 0, xn+1 = Φ(xn).
( ⇐= ): It follows directly that (xn)n≥0 is a Markov chain MC(µ, P ) with µ = δx0 and
transition probability P given by pij = 1j=Φ(i).
( =⇒ ): Given (xn)n≥0, we define Φ : S → S by

Φ(x) =
{

xn+1 if ∃n ≥ 0 s.t. xn = x,

x if ∀n ≥ 0, xn 6= x.

Let x, y ∈ S. The function Φ is well-defined since for every n ≥ 0 with xn = x,

pxy = P[xn+1 = y, xn = x]
P[xn = x] = 1xn+1=y,

where we used Definition 1.3 in the first inequality and the fact that the sequence is
deterministic in the second inequality.

(b) There are three possible choices for the initial distribution, δ1, δ2, δ3. Using the previous
exercise, we can choose Φ(i) ∈ {1, 2, 3} for every i ∈ {1, 2, 3}, i.e. there are 33 = 27 possible
choices for the transition probability P .
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Solution 1.3 [Matrix representation]

(a) Our goal is to show that for any k ≥ 1, nk ≥ . . . ≥ n1 ≥ 0, and i1, . . . , ik ∈ S,

P[Xn1 = i1, Xn2 = i2, . . . , Xnk
= ik] =

(
δiPn1δ{i1}P

n2−n1δ{i2} · · ·P
nk−nk−1

)
ik
.

Since

P[Xn1 = i1, Xn2 = i2, . . . , Xnk
= ik] =

N∑
i0=1

δi(i0)p(n1)
i0i1

p
(n2−n1)
i1i2

· · · p(nk−nk−1)
ik−1ik

,

it is sufficient to show that for any k ≥ 1, nk ≥ . . . ≥ n1 ≥ 0, and i0, i1, . . . , ik ∈ S,(
Pn1δ{i1}P

n2−n1δ{i2} · · ·P
nk−nk−1

)
i0,ik

= p
(n1)
i0i1

p
(n2−n1)
i1i2

· · · p(nk−nk−1)
ik−1ik

We proceed by induction on k. For k = 1,

(Pn1)i0,i1 = p
(n1)
i0i1

,

by Definition 1.4. For k ≥ 2, we use the induction hypothesis on k − 1 to obtain(
Pn1δ{i1}P

n2−n1δ{i2} · · ·P
nk−nk−1

)
i0,ik

=
N∑
j=1

(
Pn1δ{i1}P

n2−n1δ{i2} · · ·P
nk−1−nk−2

)
i0,j
·
(
δik−1P

nk−nk−1
)
j,ik

=
N∑
j=1

p
(n1)
i0i1

p
(n2−n1)
i1i2

· · · p(nk−1−nk−2)
ik−2j

·
(
Pnk−nk−1

)
j,ik

1j=ik−1

= p
(n1)
i0i1

p
(n2−n1)
i1i2

· · · p(nk−nk−1)
ik−1ik

as desired.

(b) Our goal is to show that for any k ≥ 1, nk ≥ . . . ≥ n1 ≥ 0, and A1, . . . , Ak ⊆ S,

P[Xn1 ∈ A1, Xn2 ∈ A2, . . . , Xnk
∈ Ak] =

∑
ik∈Ak

(
δi§Pn1δA1P

n2−n1δA2 · · ·Pnk−nk−1
)
ik
.

This can be established analogously to the previous exercise.
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Solution 1.4 [n-step transition probability]
Let us identify the set a, b, c with 1, 2, 3. Then, from the diagram we can get the following transition
matrix

P =

 0 1 0
0 1/2 1/2

1/2 0 1/2

 .

We know that p(n)
a,a = Pn(1, 1). Then we need to calculate Pn. We see that this matrix is

diagonalizable since it has different eigenvalues. Indeed, it characteristic equation is given by

0 = det(λI − P ) = λ

(
λ− 1

2

)2
− 1

4 = 1
4(λ− 1)(4λ2 + 1)

and its eigenvalues are 1, i/2,−i/2. Hence, there exists an invertible matrix U such that

P = U

 1 0 0
0 i/2 0
0 0 −i/2

U−1

and then

Pn = U

 1 0 0
0 (i/2)n 0
0 0 (−i/2)n

U−1

This implies that Pn(1, 1) = x+ y(i/2)n + z(−i/2)n for some constants x, y, z. We can calculate
the value of these constants by using the first steps of our chain

1 = P 0(1, 1) = x+ y + z

0 = P 1(1, 1) = x+ iy/2− iz/2
0 = P 2(1, 1) = x− y/4− z/4.

This give us x = 1/5, y = (i− 2)/5 and z = (2− i)/5. Therefore

Pn(1, 1) = 1
5 + i− 2

5

(
i

2

)n
+ 2− i

5

(
−i
2

)n
= 1

5 + i− 2
5

(
1
2

)n (
cos nπ2 + i sin nπ2

)
+ 2− i

5

(
1
2

)n (
cos nπ2 − i sin nπ2

)
= 1

5 +
(

1
2

)n(4
5 cos nπ2 −

2
5 sin nπ2

)
.

6 / 7



Applied Stochastic Processes, FS 2023
D-MATH Solution sheet 1

Solution 1.5 [Construction of random variables]

(a) By definition of the infimum and using right continuity of the distribution function F , we
have for every x ∈ R and α ∈ (0, 1),

(F−1(α) ≤ x) ⇐⇒ (α ≤ F (x)).

The generalized inverse F−1 : (0, 1)→ R of a distribution function is measurable, and so we
can define the random variable X := F−1(U). Clearly,

P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F (x)] = F (x).

(b) Let U ∼ U([0, 1]). We consider the binary expansion 0.Y1Y2 . . . of U , which can be defined as

Y1 := b2Uc,

and inductively for i ≥ 2,

Yi := b2iU −
i−1∑
j=1

2jYjc.

Thus,

U =
∞∑
i=1

Yi2−i.

For all N ≥ 1 and for all y1, . . . , yN ∈ {0, 1}, we have

P[Y1 = y1, . . . , YN = yN ] = 2−N = P [Y1 = y1] · . . . · P[YN = yN ],

since P[U ∈ [i · 2−N , (i + 1) · 2−N )] = 2−N for every i ∈ {0, . . . , 2N − 1}. Thus, for all
N ≥ 1, (Yi)Ni=1 is a sequence of independent, Bernoulli(1/2)-distributed random variables. A
standard application of Dynkin’s lemma implies that (Yi)i≥1 is a sequence of independent,
Bernoulli(1/2)-distributed random variables.

(c) In (b), we have constructed a sequence (Yi)i≥1 of independent Bernoulli(1/2)-distributed
random variables. It now suffices to choose an injective map φ : N×N→ N (e.g. φ(i, j) := 2i·3j)
and to define

Xi,j := Yφ(i,j).

In this way, (Xi,j)i,j≥1 is a family of independent, Bernoulli(1/2)-distributed random variables.
We then define for every i ≥ 1,

Ui :=
∞∑
j=1

2−jXi,j .

(d) Analogously to (a), we define for every i ≥ 1,

Xi = F−1
i (Ui).
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