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Solution 10.1

(a)

(b)

()

(d)

(e)

On (R, B(R)), we define the measure u by

4+ if0€ B,
w(B) = .
0 otherwise,

for B € B(R). The measure y is not o-finite since for any family (B;);>1 C B(R) with
p(B;) < oo for all i > 1, it holds that 0 ¢ ;- Bi.

By assumption, U is a random variable taking values in [0, 5]. Therefore, the random variable
Q —-M
oy :
w = 5U(w)

is well-defined since for all u € [0, 5], d,, is a o-finite measure on ([0, 5], B([0,5])) taking values
in {0,1}. Hence, 0y is point process on ([0, 5], B([0, 5])).

For all u € [0, 5], 2 - J, is a o-finite measure on (R, B(R)) taking values in {0,2}. As in (b),
we deduce that 2 - §y is a point process on (R, B(R)).

dy is not a Poisson point process on ([0, 5], B([0,5])) since dy([0,1]) and dy([4,5]) are not
independent.

By the superposition theorem from Section 6.6, the process M; + M5 is a Poisson point process
if the measure p := p1 + pe is o-finite. It therefore suffices to note that the o-finiteness of
p follows from the o-finiteness of p; and po. Indeed, let (A;);>1 C € and (B;);>1 C € be
increasing sequences such that | J,~; 4; = U;>; Bi = E, and p1(A4;) < oo and pa(B;) < 00
for all i > 1. Then (A; N B;);>1 is an increasing sequence satisfying for all i > 1,

<ui(Aq) <p2(B;)

and U;5,(Ai N B;) = E.

By the superposition theorem from Section 6.6, the process >, M; is a Poisson point process
if the measure p := Y .-, p1; is o-finite. Even though the measures p;, i > 1, are all o-finite,
this is not necessarily the case. For example, if p; := dg for all 4 > 1, then the measure p is
not o-finite as shown in (a).
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Solution 10.2

(a) First, we note that the measure y ® v is o-finite. Indeed, choose a partition (E;);>; of
R such that E; measurable and u(F;) < oo for every i, and then consider the partition
(Ei x {j})i>1,jef0,1y, which satisfies

p@v(E; x {j}) = (ki) - v({j}) = p(E;) < oo

It now follows from the superposition theorem in Section 6.6 that My + M; is a Poisson point
process on R x {0,1} with intensity uo + p1 and it suffices to note that po + p1 = p @ v.
(b) We will show that the process M is not a Poisson point process on R x {0,1}.
As in part (a), let (E;);>1 be a partition of R such that E; measurable and p(E;) < oo for
every i. Without loss of generality, assume that u(E;) > 0 for every i. We compute
P[M(E; x {0}) =1, M(E; x {1}) = 1, M(Ez x {0}) = 1, M(E5 x {1}) = 0]
=PM(Ey)  M'({0}) =1, M(Er) - M'({1}) = 1, M(E2) - M'({0}) = 1, M(E») - M'({1}) = 0]
0

since the first three events require M (E;) = M(F2) =1 and M'({0}) = M'({1}) = 1 but the
fourth event requires M (E2) =0 or M'({1}) = 0.

However, note that the sets E; x {0}, Fy x {1}, F3 x {0} and E5 x {1} are disjoint, and so if
M would be a Poisson point process, independence would imply

PIM(Ey x {0}) = 1,M(Ey x {1}) = 1, M(Ez x {0}) = 1, M(E; x {1}) = 0]
P[M (B x {0}) = 1]- PIM (B, x {1}) = 1] - P[M(Ez x {0}) = 1] - P[M (B x {1}) = 0]
P[M(E1) = M'({0}) = 1] - P[M(Ey) = M'({1}) = 1]

P[M(Ez) = M'({0}) = 1] - P[M(E3) - M'({1}) = 0]
>0

since p(En), u(Es) € (0,00) and v({0}) = v({1}) = 1 € (0,00). Hence, M cannot be a
Poisson point process.

Solution 10.3

(a) Let n > 0. Using the independence of X7,..., Xy in the first equality and their Poisson
distribution in the second equality, we obtain

PXi+...+Xp=n]= Y  PXi=d]-PX; =i

01,000,020
s.t.i1+... i =n

— o~ (AtetAr) Z )"1“ BN

B1,..,0 >0
s.t.t1+...Fig=n

1 n ; i
— o~ AR) D PRI WL
¢ R (zlzk> L b

11,0050 20
s.t.i1+...F+ig=n

e~ Ourtoct) Qb )
n!

which shows that X7 + ... 4+ X ~ Pois(A1 + ... \g).
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(b) For k > 1, define the partial sums X}, := Ele X;. We first note that (Xk)kzl is almost
surely a monotone sequence and thus converges almost surely. Hence, X, := Z?; X;is a
well-defined random variable taking values in NU {400}, and we are left with determining its
distribution.

Case 1: A = Z;’il A; = 0o. In this case, a union bound implies that

P[Xoo <o00] =PEAI>1,Vi>1:X; =0/ <Y PVi>I:X;=0]=) exp(—» X;)=0.

I>1 I>1 i>I
——

=00

Hence, X, = oo almost surely.

Case 2: A = > 72, A < oo. From part (a), we know that Xy, is Poisson-distributed with
parameter Zle ;. Hence, for all n > 0,

k n
TN (Zi:1 Ai)" A"
P[X =n] =exp (— Eﬂ i) - = exp(—A)- — ask — oo,
and so, X is Pois())-distributed.

Solution 10.4 Let us first consider u(x) = 15(x) for some B € £ = B(R).

(a) As u(z) = 1p(x), we have [w(z)M(dz) = M(B) which is a well-defined random variable
according to the definition of a point process (Definition 6.1)

(b) Moreover, we then have E[ [ u(z)M (dz)] = E[M(B)] = u(B) = [u(z)p(dx).

By linearity we can extend both results to simple functions. Since the limit of measurable functions
is measurable and using monotone convergence theorem, we can also extend both results to arbitrary
u: B — RS‘. Now let us consider v : E — R. We can write u = uy —u_ withuy,u_: E — ]Ra', and
this implies that [ u(xz)M(dz) is a well-defined random variable. Assume that [ |u(z)|u(dz) < oco.
Then we also have that

E| [ ul@M(dx)| =E| [ up(z)M(dx)| —E| [ u_(z)M(dx)
[ wnan]| = [ |-=/ ]
- / wp (@) pu(de) — [ u_(2)u(de) = / w(w)(dz),

which concludes the proof.
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