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Solution 10.1

(a) On (R,B(R)), we define the measure µ by

µ(B) =
{

+∞ if 0 ∈ B,
0 otherwise,

for B ∈ B(R). The measure µ is not σ-finite since for any family (Bi)i≥1 ⊂ B(R) with
µ(Bi) <∞ for all i ≥ 1, it holds that 0 /∈

⋃
i≥1 Bi.

(b) By assumption, U is a random variable taking values in [0, 5]. Therefore, the random variable

δU :
{

Ω →M
ω 7→ δU(ω)

is well-defined since for all u ∈ [0, 5], δu is a σ-finite measure on ([0, 5],B([0, 5])) taking values
in {0, 1}. Hence, δU is point process on ([0, 5],B([0, 5])).

(c) For all u ∈ [0, 5], 2 · δu is a σ-finite measure on (R,B(R)) taking values in {0, 2}. As in (b),
we deduce that 2 · δU is a point process on (R,B(R)).

(d) δU is not a Poisson point process on ([0, 5],B([0, 5])) since δU ([0, 1]) and δU ([4, 5]) are not
independent.

(e) By the superposition theorem from Section 6.6, the processM1 +M2 is a Poisson point process
if the measure µ := µ1 + µ2 is σ-finite. It therefore suffices to note that the σ-finiteness of
µ follows from the σ-finiteness of µ1 and µ2. Indeed, let (Ai)i≥1 ⊂ E and (Bi)i≥1 ⊂ E be
increasing sequences such that

⋃
i≥1 Ai =

⋃
i≥1 Bi = E, and µ1(Ai) < ∞ and µ2(Bi) < ∞

for all i ≥ 1. Then (Ai ∩Bi)i≥1 is an increasing sequence satisfying for all i ≥ 1,

µ(Ai ∩Bi) = µ1(Ai ∩Bi)︸ ︷︷ ︸
≤µ1(Ai)

+µ2(Ai ∩Bi)︸ ︷︷ ︸
≤µ2(Bi)

<∞,

and
⋃
i≥1(Ai ∩Bi) = E.

(f) By the superposition theorem from Section 6.6, the process
∑∞
i=1 Mi is a Poisson point process

if the measure µ :=
∑∞
i=1 µi is σ-finite. Even though the measures µi, i ≥ 1, are all σ-finite,

this is not necessarily the case. For example, if µi := δ0 for all i ≥ 1, then the measure µ is
not σ-finite as shown in (a).
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Solution 10.2

(a) First, we note that the measure µ ⊗ ν is σ-finite. Indeed, choose a partition (Ei)i≥1 of
R such that Ei measurable and µ(Ei) < ∞ for every i, and then consider the partition
(Ei × {j})i≥1,j∈{0,1}, which satisfies

µ⊗ ν(Ei × {j}) = µ(Ei) · ν({j})︸ ︷︷ ︸
=1

= µ(Ei) <∞.

It now follows from the superposition theorem in Section 6.6 that M0 +M1 is a Poisson point
process on R× {0, 1} with intensity µ0 + µ1 and it suffices to note that µ0 + µ1 = µ⊗ ν.

(b) We will show that the process M̃ is not a Poisson point process on R× {0, 1}.
As in part (a), let (Ei)i≥1 be a partition of R such that Ei measurable and µ(Ei) <∞ for
every i. Without loss of generality, assume that µ(Ei) > 0 for every i. We compute

P[M̃(E1 × {0}) = 1, M̃(E1 × {1}) = 1, M̃(E2 × {0}) = 1, M̃(E2 × {1}) = 0]
= P[M(E1) ·M ′({0}) = 1,M(E1) ·M ′({1}) = 1,M(E2) ·M ′({0}) = 1,M(E2) ·M ′({1}) = 0]
= 0,

since the first three events require M(E1) = M(E2) = 1 and M ′({0}) = M ′({1}) = 1 but the
fourth event requires M(E2) = 0 or M ′({1}) = 0.
However, note that the sets E1 ×{0}, E1 ×{1}, E2 ×{0} and E2 ×{1} are disjoint, and so if
M̃ would be a Poisson point process, independence would imply

P[M̃(E1 × {0}) = 1, M̃(E1 × {1}) = 1, M̃(E2 × {0}) = 1, M̃(E2 × {1}) = 0]

= P[M̃(E1 × {0}) = 1] · P[M̃(E1 × {1}) = 1] · P[M̃(E2 × {0}) = 1] · P[M̃(E2 × {1}) = 0]
= P[M(E1) = M ′({0}) = 1] · P[M(E1) = M ′({1}) = 1]
· P[M(E2) = M ′({0}) = 1] · P[M(E2) ·M ′({1}) = 0]

> 0

since µ(E1), µ(E2) ∈ (0,∞) and ν({0}) = ν({1}) = 1 ∈ (0,∞). Hence, M̃ cannot be a
Poisson point process.

Solution 10.3

(a) Let n ≥ 0. Using the independence of X1, . . . , Xk in the first equality and their Poisson
distribution in the second equality, we obtain

P[X1 + . . .+Xk = n] =
∑

i1,...,ik≥0
s.t. i1+...ik=n

P[X1 = i1] · · ·P[Xk = ik]

= e−(λ1+...+λk)
∑

i1,...,ik≥0
s.t. i1+...+ik=n

λ1
i1

i1! · · ·
λk

ik

ik!

= e−(λ1+...+λk) 1
n!

∑
i1,...,ik≥0

s.t. i1+...+ik=n

(
n

i1, . . . , ik

)
λ1
i1 · · ·λkik

= e−(λ1+...+λk) (λ1 + . . .+ λk)n

n! ,

which shows that X1 + . . .+Xk ∼ Pois(λ1 + . . . λk).
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(b) For k ≥ 1, define the partial sums X̄k :=
∑k
i=1 Xi. We first note that (X̄k)k≥1 is almost

surely a monotone sequence and thus converges almost surely. Hence, X̄∞ :=
∑∞
i=1 Xi is a

well-defined random variable taking values in N∪ {+∞}, and we are left with determining its
distribution.
Case 1: λ =

∑∞
i=1 λi =∞. In this case, a union bound implies that

P[X̄∞ <∞] = P[∃I ≥ 1,∀i > I : Xi = 0] ≤
∑
I≥1

P[∀i > I : Xi = 0] =
∑
I≥1

exp(−
∑
i>I

λi︸ ︷︷ ︸
=∞

) = 0.

Hence, X̄∞ =∞ almost surely.
Case 2: λ =

∑∞
i=1 λi < ∞. From part (a), we know that X̄k is Poisson-distributed with

parameter
∑k
i=1 λi. Hence, for all n ≥ 0,

P[X̄k = n] = exp
(
−

k∑
i=1

λi
)
·

(
∑n
i=1 λi)n

n! −→ exp(−λ) · λ
n

n! as k →∞,

and so, X̄∞ is Pois(λ)-distributed.

Solution 10.4 Let us first consider u(x) = 1B(x) for some B ∈ E = B(R).

(a) As u(x) = 1B(x), we have
∫
u(x)M(dx) = M(B) which is a well-defined random variable

according to the definition of a point process (Definition 6.1)

(b) Moreover, we then have E[
∫
u(x)M(dx)] = E[M(B)] = µ(B) =

∫
u(x)µ(dx).

By linearity we can extend both results to simple functions. Since the limit of measurable functions
is measurable and using monotone convergence theorem, we can also extend both results to arbitrary
u : E → R+

0 . Now let us consider u : E → R. We can write u = u+−u− with u+, u− : E → R+
0 , and

this implies that
∫
u(x)M(dx) is a well-defined random variable. Assume that

∫
|u(x)|µ(dx) <∞.

Then we also have that

E
[∫

u(x)M(dx)
]

= E
[∫

u+(x)M(dx)
]
− E

[∫
u−(x)M(dx)

]
=
∫
u+(x)µ(dx)−

∫
u−(x)µ(dx) =

∫
u(x)µ(dx),

which concludes the proof.
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