Applied Stochastic Processes

Solution sheet 10

Solution 10.1

(a) On $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, we define the measure μ by

$$
\mu(B)= \begin{cases}+\infty & \text { if } 0 \in B \\ 0 & \text { otherwise }\end{cases}
$$

for $B \in \mathcal{B}(\mathbb{R})$. The measure μ is not σ-finite since for any family $\left(B_{i}\right)_{i \geq 1} \subset \mathcal{B}(\mathbb{R})$ with $\mu\left(B_{i}\right)<\infty$ for all $i \geq 1$, it holds that $0 \notin \bigcup_{i \geq 1} B_{i}$.
(b) By assumption, U is a random variable taking values in $[0,5]$. Therefore, the random variable

$$
\delta_{U}: \begin{cases}\Omega & \rightarrow \mathcal{M} \\ \omega & \mapsto \delta_{U(\omega)}\end{cases}
$$

is well-defined since for all $u \in[0,5], \delta_{u}$ is a σ-finite measure on $([0,5], \mathcal{B}([0,5]))$ taking values in $\{0,1\}$. Hence, δ_{U} is point process on $([0,5], \mathcal{B}([0,5]))$.
(c) For all $u \in[0,5], 2 \cdot \delta_{u}$ is a σ-finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ taking values in $\{0,2\}$. As in (b), we deduce that $2 \cdot \delta_{U}$ is a point process on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
(d) δ_{U} is not a Poisson point process on $([0,5], \mathcal{B}([0,5]))$ since $\delta_{U}([0,1])$ and $\delta_{U}([4,5])$ are not independent.
(e) By the superposition theorem from Section 6.6, the process $M_{1}+M_{2}$ is a Poisson point process if the measure $\mu:=\mu_{1}+\mu_{2}$ is σ-finite. It therefore suffices to note that the σ-finiteness of μ follows from the σ-finiteness of μ_{1} and μ_{2}. Indeed, let $\left(A_{i}\right)_{i \geq 1} \subset \mathcal{E}$ and $\left(B_{i}\right)_{i \geq 1} \subset \mathcal{E}$ be increasing sequences such that $\bigcup_{i \geq 1} A_{i}=\bigcup_{i \geq 1} B_{i}=E$, and $\mu_{1}\left(A_{i}\right)<\infty$ and $\mu_{2}\left(B_{i}\right)<\infty$ for all $i \geq 1$. Then $\left(A_{i} \cap B_{i}\right)_{i \geq 1}$ is an increasing sequence satisfying for all $i \geq 1$,

$$
\mu\left(A_{i} \cap B_{i}\right)=\underbrace{\mu_{1}\left(A_{i} \cap B_{i}\right)}_{\leq \mu_{1}\left(A_{i}\right)}+\underbrace{\mu_{2}\left(A_{i} \cap B_{i}\right)}_{\leq \mu_{2}\left(B_{i}\right)}<\infty
$$

and $\bigcup_{i \geq 1}\left(A_{i} \cap B_{i}\right)=E$.
(f) By the superposition theorem from Section 6.6, the process $\sum_{i=1}^{\infty} M_{i}$ is a Poisson point process if the measure $\mu:=\sum_{i=1}^{\infty} \mu_{i}$ is σ-finite. Even though the measures $\mu_{i}, i \geq 1$, are all σ-finite, this is not necessarily the case. For example, if $\mu_{i}:=\delta_{0}$ for all $i \geq 1$, then the measure μ is not σ-finite as shown in (a).

Solution 10.2

(a) First, we note that the measure $\mu \otimes \nu$ is σ-finite. Indeed, choose a partition $\left(E_{i}\right)_{i \geq 1}$ of \mathbb{R} such that E_{i} measurable and $\mu\left(E_{i}\right)<\infty$ for every i, and then consider the partition $\left(E_{i} \times\{j\}\right)_{i \geq 1, j \in\{0,1\}}$, which satisfies

$$
\mu \otimes \nu\left(E_{i} \times\{j\}\right)=\mu\left(E_{i}\right) \cdot \underbrace{\nu(\{j\})}_{=1}=\mu\left(E_{i}\right)<\infty
$$

It now follows from the superposition theorem in Section 6.6 that $M_{0}+M_{1}$ is a Poisson point process on $\mathbb{R} \times\{0,1\}$ with intensity $\mu_{0}+\mu_{1}$ and it suffices to note that $\mu_{0}+\mu_{1}=\mu \otimes \nu$.
(b) We will show that the process \widetilde{M} is not a Poisson point process on $\mathbb{R} \times\{0,1\}$.

As in part (a), let $\left(E_{i}\right)_{i \geq 1}$ be a partition of \mathbb{R} such that E_{i} measurable and $\mu\left(E_{i}\right)<\infty$ for every i. Without loss of generality, assume that $\mu\left(E_{i}\right)>0$ for every i. We compute

$$
\begin{aligned}
& \mathbb{P}\left[\widetilde{M}\left(E_{1} \times\{0\}\right)=1, \widetilde{M}\left(E_{1} \times\{1\}\right)=1, \widetilde{M}\left(E_{2} \times\{0\}\right)=1, \widetilde{M}\left(E_{2} \times\{1\}\right)=0\right] \\
& =\mathbb{P}\left[M\left(E_{1}\right) \cdot M^{\prime}(\{0\})=1, M\left(E_{1}\right) \cdot M^{\prime}(\{1\})=1, M\left(E_{2}\right) \cdot M^{\prime}(\{0\})=1, M\left(E_{2}\right) \cdot M^{\prime}(\{1\})=0\right] \\
& =0
\end{aligned}
$$

since the first three events require $M\left(E_{1}\right)=M\left(E_{2}\right)=1$ and $M^{\prime}(\{0\})=M^{\prime}(\{1\})=1$ but the fourth event requires $M\left(E_{2}\right)=0$ or $M^{\prime}(\{1\})=0$.
However, note that the sets $E_{1} \times\{0\}, E_{1} \times\{1\}, E_{2} \times\{0\}$ and $E_{2} \times\{1\}$ are disjoint, and so if \widetilde{M} would be a Poisson point process, independence would imply

$$
\begin{aligned}
& \mathbb{P}\left[\widetilde{M}\left(E_{1} \times\{0\}\right)=1, \widetilde{M}\left(E_{1} \times\{1\}\right)=1, \widetilde{M}\left(E_{2} \times\{0\}\right)=1, \widetilde{M}\left(E_{2} \times\{1\}\right)=0\right] \\
& =\mathbb{P}\left[\widetilde{M}\left(E_{1} \times\{0\}\right)=1\right] \cdot \mathbb{P}\left[\widetilde{M}\left(E_{1} \times\{1\}\right)=1\right] \cdot \mathbb{P}\left[\widetilde{M}\left(E_{2} \times\{0\}\right)=1\right] \cdot \mathbb{P}\left[\widetilde{M}\left(E_{2} \times\{1\}\right)=0\right] \\
& =\mathbb{P}\left[M\left(E_{1}\right)=M^{\prime}(\{0\})=1\right] \cdot \mathbb{P}\left[M\left(E_{1}\right)=M^{\prime}(\{1\})=1\right] \\
& \quad \cdot \mathbb{P}\left[M\left(E_{2}\right)=M^{\prime}(\{0\})=1\right] \cdot \mathbb{P}\left[M\left(E_{2}\right) \cdot M^{\prime}(\{1\})=0\right] \\
& >0
\end{aligned}
$$

since $\mu\left(E_{1}\right), \mu\left(E_{2}\right) \in(0, \infty)$ and $\nu(\{0\})=\nu(\{1\})=1 \in(0, \infty)$. Hence, \widetilde{M} cannot be a Poisson point process.

Solution 10.3

(a) Let $n \geq 0$. Using the independence of X_{1}, \ldots, X_{k} in the first equality and their Poisson distribution in the second equality, we obtain

$$
\begin{aligned}
\mathbb{P}\left[X_{1}+\ldots+X_{k}=n\right] & =\sum_{\substack{i_{1}, \ldots, i_{k} \geq 0 \\
\text { s.t. } i_{1}+\ldots i_{k}=n}} \mathbb{P}\left[X_{1}=i_{1}\right] \cdots \mathbb{P}\left[X_{k}=i_{k}\right] \\
& =e^{-\left(\lambda_{1}+\ldots+\lambda_{k}\right)} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 0 \\
\text { s.t. } i_{1}+\ldots+i_{k}=n}} \frac{\lambda_{1}{ }^{i_{1}}}{i_{1}!} \cdots \frac{\lambda_{k}{ }^{i_{k}}}{i_{k}!} \\
& =e^{-\left(\lambda_{1}+\ldots+\lambda_{k}\right)} \frac{1}{n!} \sum_{\substack{i_{1}, \ldots, i_{k} \geq 0 \\
\text { s.t. } i_{1}+\ldots+i_{k}=n}}\binom{n}{i_{1}, \ldots, i_{k}} \lambda_{1}^{i_{1}} \cdots \lambda_{k}^{i_{k}} \\
& =e^{-\left(\lambda_{1}+\ldots+\lambda_{k}\right)} \frac{\left(\lambda_{1}+\ldots+\lambda_{k}\right)^{n}}{n!}
\end{aligned}
$$

which shows that $X_{1}+\ldots+X_{k} \sim \operatorname{Pois}\left(\lambda_{1}+\ldots \lambda_{k}\right)$.
(b) For $k \geq 1$, define the partial sums $\bar{X}_{k}:=\sum_{i=1}^{k} X_{i}$. We first note that $\left(\bar{X}_{k}\right)_{k \geq 1}$ is almost surely a monotone sequence and thus converges almost surely. Hence, $\bar{X}_{\infty}:=\sum_{i=1}^{\infty} X_{i}$ is a well-defined random variable taking values in $\mathbb{N} \cup\{+\infty\}$, and we are left with determining its distribution.
Case 1: $\lambda=\sum_{i=1}^{\infty} \lambda_{i}=\infty$. In this case, a union bound implies that

$$
\mathbb{P}\left[\bar{X}_{\infty}<\infty\right]=\mathbb{P}\left[\exists I \geq 1, \forall i>I: X_{i}=0\right] \leq \sum_{I \geq 1} \mathbb{P}\left[\forall i>I: X_{i}=0\right]=\sum_{I \geq 1} \exp (-\underbrace{\sum_{i>I} \lambda_{i}}_{=\infty})=0 .
$$

Hence, $\bar{X}_{\infty}=\infty$ almost surely.
Case 2: $\lambda=\sum_{i=1}^{\infty} \lambda_{i}<\infty$. From part (a), we know that \bar{X}_{k} is Poisson-distributed with parameter $\sum_{i=1}^{k} \lambda_{i}$. Hence, for all $n \geq 0$,

$$
\mathbb{P}\left[\bar{X}_{k}=n\right]=\exp \left(-\sum_{i=1}^{k} \lambda_{i}\right) \cdot \frac{\left(\sum_{i=1}^{n} \lambda_{i}\right)^{n}}{n!} \longrightarrow \exp (-\lambda) \cdot \frac{\lambda^{n}}{n!} \quad \text { as } k \rightarrow \infty
$$

and so, \bar{X}_{∞} is $\operatorname{Pois}(\lambda)$-distributed.
Solution 10.4 Let us first consider $u(x)=\mathbf{1}_{B}(x)$ for some $B \in \mathcal{E}=\mathcal{B}(\mathbb{R})$.
(a) As $u(x)=\mathbf{1}_{B}(x)$, we have $\int u(x) M(d x)=M(B)$ which is a well-defined random variable according to the definition of a point process (Definition 6.1)
(b) Moreover, we then have $\mathbb{E}\left[\int u(x) M(d x)\right]=\mathbb{E}[M(B)]=\mu(B)=\int u(x) \mu(d x)$.

By linearity we can extend both results to simple functions. Since the limit of measurable functions is measurable and using monotone convergence theorem, we can also extend both results to arbitrary $u: E \rightarrow \mathbb{R}_{0}^{+}$. Now let us consider $u: E \rightarrow \mathbb{R}$. We can write $u=u_{+}-u_{-}$with $u_{+}, u_{-}: E \rightarrow \mathbb{R}_{0}^{+}$, and this implies that $\int u(x) M(d x)$ is a well-defined random variable. Assume that $\int|u(x)| \mu(d x)<\infty$. Then we also have that

$$
\begin{aligned}
\mathbb{E}\left[\int u(x) M(d x)\right] & =\mathbb{E}\left[\int u_{+}(x) M(d x)\right]-\mathbb{E}\left[\int u_{-}(x) M(d x)\right] \\
& =\int u_{+}(x) \mu(d x)-\int u_{-}(x) \mu(d x)=\int u(x) \mu(d x)
\end{aligned}
$$

which concludes the proof.

