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Solution 11.1

(a) For B ∈ B(R),
T#µ(B) = µ

(
T−1(B)

)
= µ(B × [0, 2]) = 2 · LebR(B).

Hence, T#µ is σ-finite and T#M is a Poisson point process on R with intensity measure
T#µ = 2 · Leb.

(b) For B ∈ B(R),

T#µ(B) = µ(B × R) =
{

0 if LebR(B) = 0,
∞ if LebR(B) > 0.

Hence, T#µ is not σ-finite and T#M is a not a Poisson point process on R.

(c) For B ∈ B([0, 1]),
T#µ(B) = 4 · Leb[0,1](B).

Hence, T#µ is σ-finite and T#M is a Poisson point process on [0, 1] with intensity measure
T#µ = 4 · Leb.

(d) We note that T : R2 → R2 is a C1-diffeomorphism and T−1(y1, y2) = (y2/2, y1/2). Therefore,
for all (y1, y2) ∈ R2, |det(dT−1(y1, y2))| = 1/4. Hence, T#µ = 1/4 ·Leb is σ-finite and T#M
is a Poisson point process on R with intensity measure T#µ = 1/4 · Leb.

(e) By the restriction theorem, the restricted processes M[0,1]2 , M[0,2]2 , and M[2,3]2 are Poisson
point processes with intensity measure Leb (on the subsets). Again by the restriction
theorem, M[0,1]2 is independent of M[2,3]2 and M[0,2]2 is independent of M[2,3]2 (note that
M({(2, 2)}) = 0 a.s.). The restricted processes M[0,1]2 and M[0,2]2 are not independent. For
example, it can be seen by noticing that M[0,2]2([0, 2]2) = 0 implies M[0,1]2([0, 1]2) = 0.

Solution 11.2

(a) We consider the map T : Rd → [0,∞) defined by T (x) = ‖x‖2 =
√
x2

1 + · · ·+ x2
d, which is

a continuous function, and so it is measurable. Since T#µ is σ-finite (by considering the
sequence ([0, n])n≥1), the mapping theorem implies that T#M is a Poisson point process on
[0,∞) with intensity measure T#µ.
Let s ≥ r ≥ 0. Then we have

T#µ([r, s]) = µ
(
T−1([r, s])

)
= µ

(
Bs \Br

)
= λ · (|Bs| − |Br|) = λ · πd/2

Γ(d/2 + 1) · (s
d − rd).

More generally, T#µ(B) = λ · Leb(T−1(B)) for B ∈ B([0,∞)).

(b) Fix a sequence (rk)k≥0 with |Brk
| = k. Using the restriction property from Section 6.8, we

note that
(
M(Brk

\Brk−1)
)
k≥1 is a sequence of independent, identically distributed random

variables with
M(Br1 \Br0) ∼ Pois(λ).

Hence, by the strong law of large numbers, we have almost surely

lim
r→∞

M(Br)
|Br|

= lim
n→∞

M(Brn)
|Brn
|

= lim
n→∞

∑n
k=1 M(Brk

\Brk−1)
n

= E[M(Br1 \Br0)] = λ.
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Solution 11.3

(a) To see that the restricted measures are diffuse, it suffices to note that for every i ∈ N,

µi({x}) ≤ µ({x}) = 0, ∀x ∈ Ei,

and so µi is diffuse.
The fact thatME1 ,ME2 , . . . are independent Poisson point processes with respective intensities
µE1 , µE2 , . . . follows directly from the restriction property in Section 6.8.

(b) Fix any i ∈ N. Since µ(Ei) <∞, we can use Proposition 6.10 to the explicitly construct a
Poisson point process with intensity measure µEi

as

M̃Ei =
Z∑
j=1

δXj ,

where Z ∼ Pois(µ(Ei)) and Xj ∼
µEi

(·)
µEi

, j ≥ 1, are independent. Since being simple is a
property of the law and P

M̃Ei

= PMEi
by Proposition 6.14, it suffices to prove that M̃Ei

is
almost surely simple. To this end, we compute

P[M̃Ei
is not simple] ≤ P[∃j 6= k : Xj = Xk] ≤

∑
j 6=k

P[Xj = Xk] = 0,

where we used in the last equality that

P[Xj = Xk] =
∫
Ei

P[Xj = x]︸ ︷︷ ︸
=0

µEi
(dx)

µ(Ei)

by the independence of Xj and Xk. This concludes that M̃Ei
and thereby MEi

is almost
surely simple.

(c) Since P[MEi
is simple] = 1 by part (b), we deduce that

P[M is simple] = P[
∞⋂
i=1
{MEi

is simple}] = 1.

Solution 11.4

(a) Since the Lebesgue measure on R× [0,∞) is diffuse and σ-finite, M is almost surely simple.

(b) For x ∈ Z ⊂ R, µ({x}) = 1 and so M({x}) ∼ Pois(1), which takes values in {2, 3, . . .} with
positive probability. Hence, the process is not almost surely simple.
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Solution 11.5
To show (i) ⇐⇒ (ii), we note that by definition,

PM = PM ′ ⇐⇒ ∀A ∈ B(M), PM (A) = PM ′(A) ⇐⇒ ∀A ∈ B(M),P[M ∈ A] = P[M ′ ∈ A].

The implications (ii) =⇒ (iii) =⇒ (iv) are clear by inclusion.
To show (iii) =⇒ (ii), we use Dynkin’s lemma. The family

B := {{η : η(B1) = n1, . . . , η(Bk) = nk} : k ≥ 1;B1, . . . , Bk ∈ E disjoint ;n1, . . . , nk ∈M} ⊂ B(M)

is a π-system and σ(B) = B(M) by definition. The family

D := {A ∈ B(M) : P[M ∈ A] = P[M ′ ∈ A]}

is a Dynkin-system and it contains B by assumption. Hence, we conclude using Dynkin’s lemma
that D = B(M) and so (ii) holds.

To show (iv) =⇒ (iii), we consider B1, . . . , Bk and n1, . . . , nk for some k ≥ 1 and define the
disjoint sets

C1 = B1, C2 = B2 \B1, . . . , Ck = Bk \
k−1⋃
i=1

Bi.

(iii) then follows from (iv) by summing over all possible ways how the points could be distributed
over the disjoint sets C1, . . . , Ck under the constraints M(B1) = n1, . . . ,M(Bk) = nk.
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