Applied Stochastic Processes

Solution sheet 12

Solution 12.1

(a) First, we note that the product measure of two σ-finite measures taking values in $\mathbb{N} \cup\{\infty\}$ is itself a σ-finite measure taking values in $\mathbb{N} \cup\{\infty\}$. By Exercise 9.2 (a), showing that N is a point process on $(E \times F, \mathcal{E} \otimes \mathcal{F})$ is equivalent to showing that for all $C \in \mathcal{E} \otimes \mathcal{F}$, $N(C)$ is a random variable. By applying Dynkin's lemma, it actually suffices to show that $N(C)$ is a random variable for sets of the form $C=A \times B$ with $A \in \mathcal{E}$ and $B \in \mathcal{F}$ (which form a π-system). But in this case, we have by the definition of the product measure $N(A \times B)=N(A) \cdot N^{\prime}(B)$, which is a product of two random variables and thus a random variable.
(b) No, N is not a Poisson point process. To illustrate this, we consider the following example: Let $E=F=\mathbb{R}$ and $\mu=\nu=$ Leb. Then

$$
\left\{N\left([1,2]^{2}\right)=1, N([1,2] \times[3,4])=0\right\}=\left\{N([1,2])=1, N^{\prime}([1,2])=1, N^{\prime}([3,4])=0\right\}
$$

and so

$$
\mathbb{P}\left[N\left([3,4]^{2}\right)=0 \mid N\left([1,2]^{2}\right)=1, N([1,2] \times[3,4])=0\right]=1 \neq \mathbb{P}\left[N\left([3,4]^{2}\right)=0\right],
$$

which shows that N cannot be a Poisson point process as it contradicts the independence property on disjoint sets.
(c) Yes, this is exactly the marking theorem from Section 4.8.
(d) Yes, we can define a probability measure $\bar{\nu}$ by $\bar{\nu}(B)=\frac{\nu(B)}{\nu(F)}$ for $B \in \mathcal{F}$ and consider a Poisson point process M on E with intensity measure $\nu(F) \cdot \mu$. Then by the marking theorem, the marked process \bar{M} is a Poisson point process on $E \times F$ with intensity measure $(\nu(F) \cdot \mu) \otimes \bar{\nu}=\mu \otimes \nu$. The equality of the two measures can be obtained by first noticing that they agree on sets of the form $C=A \times B$ for $A \in \mathcal{E}$ and $B \in \mathcal{F}$ and then applying Dynkin's lemma.

Solution 12.2

(a) Let us consider the marked process $\bar{M}=\sum_{i} \delta_{\left(X_{i}, R_{i}\right)}$. By the marking theorem, this is a Poisson point process on $\mathbb{R}^{d} \times \mathbb{R}^{+}$with intensity measure $\mu \otimes \rho$. In this process, each point (x, r) of the space corresponds to the ball $B(x, r)$. Note that the number of balls that intersect the origin is given by the number of points in the set $A=\left\{(x, r) \in \mathbb{R}^{d} \times \mathbb{R}^{+}:|x|<r\right\}$. In other words $N_{0}=\bar{M}(A)$. To see that A is measurable, we note that $A:=f^{-1}((0, \infty))$ for the measurable function $f((x, r))=r-|x|$. This implies that N_{0} is a well defined random variable and that $N_{0} \sim \operatorname{Poisson}((\mu \otimes \rho)(A))$. We know by Fubini's Theorem that

$$
(\mu \otimes \rho)(A)=\int_{\mathbb{R}^{d} \times \mathbb{R}^{+}} 1_{A}(y)(\mu \otimes \rho)(d y)=\int_{\mathbb{R}^{d}} \int_{|x|}^{\infty} \rho(d r) \mu(d x)
$$

which shows what we wanted.
(b) First, note that $\left\{\mathcal{O}=\mathbb{R}^{d}\right\}=\bigcap_{N \geq 1}\{\mathcal{O} \supset \overline{B(0, N)}\}$. By compactness of $\overline{B(0, N)}$,

$$
\{\mathcal{O} \supset \overline{B(0, N)}\}=\bigcup_{I \geq 1}\left\{\overline{B(0, N)} \subset \bigcup_{1 \leq i \leq I} B\left(X_{i}, R_{i}\right)\right\}
$$

and for every $I \in \mathbb{N}$,

$$
\left\{\overline{B(0, N)} \subset \bigcup_{1 \leq i \leq I} B\left(X_{i}, R_{i}\right)\right\}=\bigcup_{n \geq 1}\left\{\overline{B(0, N)} \subset \bigcup_{1 \leq i \leq I} B\left(X_{i}, R_{i}\right) \text { and } R_{i} \geq \frac{1}{n}, \forall i \leq I\right\}
$$

Since \mathbb{Q}^{d} is dense in \mathbb{R}^{d}, we have

$$
\left\{\overline{B(0, N)} \subset \bigcup_{1 \leq i \leq I} B\left(X_{i}, R_{i}\right) \text { and } R_{i} \geq \frac{1}{n}, \forall i \leq I\right\}=\bigcap_{q \in \overline{B(0, N)} \cap \mathbb{Q}^{d}} \bigcup_{1 \leq i \leq I} \underbrace{\left\{q \in B\left(X_{i}, R_{i}\right)\right\}}_{=\left\{\left|X_{i}-q\right|<R_{i}\right\}} .
$$

In summary, we have shown that $\left\{\mathcal{O}=\mathbb{R}^{d}\right\}$ can be written in terms of countable unions and intersections of measurable sets, and is therefore measurable. Second, we know by Fubini's theorem that

$$
\int_{\mathbb{R}^{d}} \int_{|x|}^{\infty} \rho(d r) \mu(d x)=\int_{0}^{\infty} \int_{B(0, r)} \mu(d x) \rho(d r)=\pi_{d} \int_{0}^{\infty} r^{d} \rho(d r)
$$

Hence,

$$
\mathbb{P}[0 \notin \mathcal{O}]=\mathbb{P}\left[N_{0}=0\right]=\exp \left(-\pi_{d} \int_{0}^{\infty} r^{d} \rho(d r)\right)
$$

Suppose that $\mathbb{P}\left[\mathcal{O}=\mathbb{R}^{d}\right]=1$. Then $P[0 \in \mathcal{O}]=1$, and we deduce from the last expression that $\int_{0}^{\infty} r^{d} \rho(d r)=\infty$. To prove the converse, assume that $\int_{0}^{\infty} r^{d} \rho(d r)=\infty$. As a preliminary result we first show for any $n \in \mathbb{N}$ that

$$
\begin{equation*}
(\mu \otimes \rho)\left(\left\{(x, r) \in \mathbb{R}^{d} \times \mathbb{R}^{+}: B(0, n) \subset B(x, r)\right\}\right)=\infty \tag{1}
\end{equation*}
$$

Since $B(0, n) \subset B(x, r)$ if and only if $r \geq|x|+n$, the left-hand side of equation (1) equals

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} 1_{\{r \geq|x|+n\}} \mu(d x) \rho(d r)=\pi_{d} \int_{n}^{\infty}(r-n)^{d} \rho(d r)
$$

This is bounded below by

$$
\pi_{d} \int_{2 n}^{\infty}\left(\frac{r}{2}\right)^{d} \rho(d r)=\pi_{d} 2^{-d} \int_{0}^{\infty} 1_{\{r \geq 2 n\}} r^{d} \rho(d r)
$$

proving (1). Since \bar{M} is a Poisson point process with intensity $\mu \otimes \rho$, the ball $B(0, n)$ is almost surely covered even by one of the balls $B\left(X_{i}, R_{i}\right)$. Since n is arbitrary, it follows that $\mathbb{P}\left[\mathcal{O}=\mathbb{R}^{d}\right]=1$.

Solution 12.3

(a) Recall by definition that $\mu(B)=\mathbb{E}[M(B)]$. We have

$$
\mathcal{L}_{M}\left(t 1_{B}\right)=\mathbb{E}\left[\exp \left(-t \int_{E} 1_{B} M(d x)\right)\right]=\mathbb{E}[\exp (-t M(B))]
$$

Since $M(B) \geq 0$, the exponential above is bounded by 1 . Besides, $M(B) \in L^{1}(\mathbb{P})$, so we can exchange the derivative and the expectation in the Laplace functional, therefore

$$
-\frac{d}{d t} \mathcal{L}_{M}\left(t 1_{B}\right)=\mathbb{E}[M(B) \exp (-t M(B))]
$$

It suffices now to take $t=0$ to conclude.
(b) For all $t>0$, we have $L_{M}\left(t 1_{B}\right)=\mathbb{E}[\exp (-t M(B))]=\mathbb{E}\left[1_{\{M(B)=0\}}+e^{-t M(B)} 1_{\{M(B) \geq 1\}}\right]$. By dominated convergence, we get

$$
\lim _{t \rightarrow \infty} \mathcal{L}_{M}\left(t 1_{B}\right)=\mathbb{E}\left[1_{\{M(B)=0\}}\right]+0=\mathbb{P}[M(B)=0]
$$

