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Solution 12.1

(a) First, we note that the product measure of two σ-finite measures taking values in N ∪ {∞}
is itself a σ-finite measure taking values in N ∪ {∞}. By Exercise 9.2 (a), showing that
N is a point process on (E × F, E ⊗ F) is equivalent to showing that for all C ∈ E ⊗ F ,
N(C) is a random variable. By applying Dynkin’s lemma, it actually suffices to show that
N(C) is a random variable for sets of the form C = A × B with A ∈ E and B ∈ F (which
form a π-system). But in this case, we have by the definition of the product measure
N(A×B) = N(A) ·N ′(B), which is a product of two random variables and thus a random
variable.

(b) No, N is not a Poisson point process. To illustrate this, we consider the following example:
Let E = F = R and µ = ν = Leb. Then{

N([1, 2]2) = 1, N([1, 2]× [3, 4]) = 0
}

=
{
N([1, 2]) = 1, N ′([1, 2]) = 1, N ′([3, 4]) = 0

}
,

and so

P
[
N([3, 4]2) = 0|N([1, 2]2) = 1, N([1, 2]× [3, 4]) = 0

]
= 1 6= P

[
N([3, 4]2) = 0

]
,

which shows that N cannot be a Poisson point process as it contradicts the independence
property on disjoint sets.

(c) Yes, this is exactly the marking theorem from Section 4.8.

(d) Yes, we can define a probability measure ν̄ by ν̄(B) = ν(B)
ν(F ) for B ∈ F and consider a

Poisson point process M on E with intensity measure ν(F ) · µ. Then by the marking
theorem, the marked process M is a Poisson point process on E × F with intensity measure
(ν(F ) ·µ)⊗ ν̄ = µ⊗ ν. The equality of the two measures can be obtained by first noticing that
they agree on sets of the form C = A×B for A ∈ E and B ∈ F and then applying Dynkin’s
lemma.

Solution 12.2

(a) Let us consider the marked process M =
∑
i δ(Xi,Ri). By the marking theorem, this is a

Poisson point process on Rd × R+ with intensity measure µ⊗ ρ. In this process, each point
(x, r) of the space corresponds to the ball B(x, r). Note that the number of balls that intersect
the origin is given by the number of points in the set A = {(x, r) ∈ Rd × R+ : |x| < r}. In
other words N0 = M(A). To see that A is measurable, we note that A := f−1((0,∞)) for
the measurable function f((x, r)) = r − |x|. This implies that N0 is a well defined random
variable and that N0 ∼ Poisson((µ⊗ ρ)(A)). We know by Fubini’s Theorem that

(µ⊗ ρ)(A) =
∫
Rd×R+

1A(y)(µ⊗ ρ)(dy) =
∫
Rd

∫ ∞
|x|

ρ(dr)µ(dx),

which shows what we wanted.
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(b) First, note that {O = Rd} =
⋂
N≥1{O ⊃ B(0, N)}. By compactness of B(0, N),

{O ⊃ B(0, N)} =
⋃
I≥1

B(0, N) ⊂
⋃

1≤i≤I
B(Xi, Ri)

 ,

and for every I ∈ N,B(0, N) ⊂
⋃

1≤i≤I
B(Xi, Ri)

 =
⋃
n≥1

B(0, N) ⊂
⋃

1≤i≤I
B(Xi, Ri) and Ri ≥

1
n
,∀i ≤ I

 .

Since Qd is dense in Rd, we haveB(0, N) ⊂
⋃

1≤i≤I
B(Xi, Ri) and Ri ≥

1
n
,∀i ≤ I

 =
⋂

q∈B(0,N)∩Qd

⋃
1≤i≤I

{q ∈ B(Xi, Ri)}︸ ︷︷ ︸
={|Xi−q|<Ri}

.

In summary, we have shown that {O = Rd} can be written in terms of countable unions and
intersections of measurable sets, and is therefore measurable. Second, we know by Fubini’s
theorem that ∫

Rd

∫ ∞
|x|

ρ(dr)µ(dx) =
∫ ∞

0

∫
B(0,r)

µ(dx)ρ(dr) = πd

∫ ∞
0

rdρ(dr)

Hence,

P[0 6∈ O] = P[N0 = 0] = exp
(
−πd

∫ ∞
0

rdρ(dr)
)
.

Suppose that P[O = Rd] = 1. Then P [0 ∈ O] = 1, and we deduce from the last expression
that

∫∞
0 rdρ(dr) =∞. To prove the converse, assume that

∫∞
0 rdρ(dr) =∞. As a preliminary

result we first show for any n ∈ N that

(µ⊗ ρ)
(
{(x, r) ∈ Rd × R+ : B(0, n) ⊂ B(x, r)}

)
=∞. (1)

Since B(0, n) ⊂ B(x, r) if and only if r ≥ |x|+ n, the left-hand side of equation (1) equals∫ ∞
0

∫
Rd

1{r≥|x|+n}µ(dx)ρ(dr) = πd

∫ ∞
n

(r − n)dρ(dr).

This is bounded below by

πd

∫ ∞
2n

(r
2

)d
ρ(dr) = πd2−d

∫ ∞
0

1{r≥2n}r
dρ(dr),

proving (1). Since M is a Poisson point process with intensity µ ⊗ ρ, the ball B(0, n) is
almost surely covered even by one of the balls B(Xi, Ri). Since n is arbitrary, it follows that
P[O = Rd] = 1.
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Solution 12.3

(a) Recall by definition that µ(B) = E[M(B)]. We have

LM (t1B) = E
[
exp

(
−t
∫
E

1BM(dx)
)]

= E[exp(−tM(B))].

Since M(B) ≥ 0, the exponential above is bounded by 1. Besides, M(B) ∈ L1(P), so we can
exchange the derivative and the expectation in the Laplace functional, therefore

− d

dt
LM (t1B) = E[M(B) exp(−tM(B))].

It suffices now to take t = 0 to conclude.

(b) For all t > 0, we have LM (t1B) = E[exp(−tM(B))] = E[1{M(B)=0} + e−tM(B)1{M(B)≥1}]. By
dominated convergence, we get

lim
t→∞

LM (t1B) = E[1{M(B)=0}] + 0 = P[M(B) = 0].
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