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Solution 13.1

(a) No. In order to be a Poisson process, the stochastic process (Nt)t≥0 would also need to be
almost surely non-decreasing and right-continuous (see the definition of counting process in
Section 7.1).

(b) Let U be a uniform random variable taking values in (0, 1]. Define (Nt)t≥0 by

Nt :=
∞∑
i=0

1i+U≤t.

It follows directly from the definition that (Nt)t≥0 is a counting process and it makes jumps
of size 1 at the times U, 1 + U, 2 + U, . . .. The process has stationary increments since for any
t > s ≥ 0, the increment Nt −Ns only depends on t− s. To show that the increments are not
independent, it suffices to note that

N1/2 −N0 = 10<U≤1/2 and N1 −N1/2 = 11/2<U≤1 = 1− (N1/2 −N0).

(c) Yes. By definition, a counting process is almost surely non-decreasing and right-continuous.
In particular, left limits almost surely exist due to the monotonicity of the process.

(d) Yes. By definition, a counting process almost surely is non-decreasing and takes values in N.
Hence, for any t ≥ 0, the number of jumps in [0, t] is at most Nt. Since the random variable
Nt is almost surely finite, the same holds for the number of jumps.

Solution 13.2

(a) For the choice ρ(u) = λ for all u ≥ 0, we obtain for 0 ≤ s < t,∫ t

s

ρ(u)du = λ(t− s),

and so Nt −Ns ∼ Poisson(λ(t− s)). Hence, it follows from part (iii) of Theorem 7.2 or part
(ii) of Theorem 7.3 that (Nt)t≥0 is a Poisson process with rate λ.

(b) In general, the increments are not stationary. In part (a), we have seen that the increments
are stationary if ρ is constant. Conversely, if ρ is not constant, we can choose u, v ≥ 0 such
that ρ(u) > ρ(v). Then for some h > 0 sufficiently small,∫ u+h

u

ρ(u)du >
∫ v+h

v

ρ(v)dv,

and so the increments Nu+h −Nu and Nv+h −Nv do not have the same distribution.

(c) The intensity measure µρ of the Poisson point process M is defined by

µρ(B) =
∫
B

ρ(u)du

for B ∈ B(R+).
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(d) In general, S1 and S2 − S1 are not independent as the following result shows.
Claim: S1 and S2 − S1 are independent if and only if ρ is constant.
( ⇐= ): If ρ is constant, then by part (a), (Nt)t≥0 is actually a Poisson process with rate
λ = ρ. Hence, the inter-arrival times are independent Exp(λ)-distributed random variables.
( =⇒ ): Let s, t ≥ 0. For every ε ∈ (0, s), we have by the independence of the increments that

P[t < S1 ≤ t+ ε] = P[Nt = 0, Nt+ε −Nt ≥ 1] = P[Nt = 0] · P[Nt+ε −Nt ≥ 1],

and

P[S2 − S1 > s, t < S1 ≤ t+ ε] = P[Nt = 0, Nt+ε −Nt = 1, Nt+s −Nt+ε = 0]
= P[Nt = 0] · P[Nt+ε −Nt = 1] · P[Nt+s −Nt+ε = 0].

By assumption, S1 and S2 − S1 are independent and so we have

P[S2 − S1 > s] = P[S2 − S1 > s | t < S1 ≤ t+ ε] = P[Nt+s −Nt+ε = 0] · P[Nt+ε −Nt = 1]
P[Nt+ε −Nt ≥ 1] .

Letting ε→ 0, it follows that

P[S2 − S1 > s] = exp
(
−
∫ t+s

t

ρ(u)du
)
,

where we have used that x·e−x

1−e−x → 1 as x→ 0. This is only possible if for all s ≥ 0,
∫ t+s
t

ρ(u)du
does not depend on t. As in part (b), we conclude that ρ must be constant.
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Solution 13.3

(a) The function ρ : [0,+∞)→ (0,+∞) is continuous, hence integrable, and so R is well-defined
and continuous as a function of t. Since ρ is strictly positive, R is strictly increasing as a
function of t, hence injective. Finally, since

∫∞
0 ρ(u)du = +∞, R is surjective.

(b) Since R is a continuous, increasing bijection by part (a), R−1 : [0,+∞) → [0,+∞) is a
well-defined continuous, increasing bijection. In particular, R−1(0) = 0. This implies that
(Ñt)t≥0 is a counting process. Furthermore, for any k ≥ 1 and 0 = t0 < t1 < . . . tk, it holds
that 0 = R−1(t0) < R−1(t1) < . . . < R−1(tk), and so the independence of the increments of
Ñ follows from the independence of the increments of N . Finally, for 0 ≤ s < t,

Ñt − Ñs = NR−1(t) −NR−1(s) ∼ Pois
(∫ R−1(t)

R−1(s)
ρ(u)du︸ ︷︷ ︸

=t−s

)
,

and so we conclude that Ñ is a Poisson process with rate 1.

(c) As in part (c), we first note that (Nt)t≥0 is a counting process with independent increments.
Furthermore, for 0 ≤ s < t,

Nt −Ns = ÑR(t) − ÑR(s) ∼ Pois(R(t)−R(s)︸ ︷︷ ︸∫ t

s
ρ(u)du

),

and so we conclude that N is an inhomogeneous Poisson process with rate ρ.

Remark: Alternatively, it is possible to prove (b) and (c) using the mapping theorem for Poisson
point processes from Section 6.9 and the correspondence between Poisson processes and Poisson
point processes established in Theorem 7.2 (as well as an analogous result for inhomogenous Poisson
processes).

Solution 13.4 Let t > 0 be fixed.

(a) Let us consider 0 ≤ u ≤ t, 0 ≤ v. We have that

P[At ≥ u,Bt > v] = P[SNt ≤ t− u, SNt+1 > t+ v] = P[Nt+v −Nt−u = 0] = e−λue−λv

and if u > t we have P[At ≥ u,Bt > v] = 0. Let U, V be independent random variables with
distribution Exp(λ). Note that

P[U ∧ t ≥ u, V > v] = e−λue−λv1{u≤t}.

Denote µ(At,Bt) the joint law of At and Bt, and µ(U∧t,V ) = µU∧t ⊗ µV the joint law of U ∧ t
and V , which is the product of their laws by independence. These measures agree on the set
{[u,∞)× (v,∞);u, v ∈ R}, which is a π-system that generates B(R2). By Dynkin’s Lemma,
this implies that µ(At,Bt) = µU∧t ⊗ µV . Therefore, for u, v ≥ 0

P[At ≥ u] = µ(At,Bt)([u,∞)× R) = µU∧t ⊗ µV ([u,∞)× R) = e−λu1{u≤t}

and
P[Bt > v] = µ(At,Bt)(R× (v,∞)) = µU∧t ⊗ µV (R× (v,∞)) = e−λv.

This shows that At ∼ T1 ∧ t and that Bt ∼ T1. We can also see from the steps above that for
any u, v ∈ R,

P[At ≥ u,Bt > v] = P[At ≥ u]P[Bt > v].
Since the families {[u,∞);u ∈ R} and {(v,∞); v ∈ R} are π-systems that generate B(R), we
conclude using Dynkin’s Lemma that At and Bt are independent.
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(b) From (a) we know that the densities of At and Bt are given by

fAt(x) = 1{0≤x<t}λe−λx + e−λtδ(x,t), fBt(x) = 1{x≥0}λe
−λx.

Since At and Bt are independent, the density of Lt, is given by the convolution of fAt and
fBt :

fLt
(x) =

∫
R
fAt

(x− y)fBt
(y)dy.

For 0 ≤ x < t:
fLt

(x) =
∫ x

0
λe−λ(x−y)λe−λydy = λ2xe−λx .

For x ≥ t:

fLt(x) =
∫ x

x−t
λe−λ(x−y)λe−λ(y)dy + e−λtλe−λ(x−t) = λ(1 + λt)e−λx

Hence,
E[Lt] =

∫ ∞
0

xfLt
(x)dx = 2− exp (−λt)

λ
.

It follows that
lim
t→∞

E[Lt] = 2
λ

= 2E[T1].

We discover that the interval in which t falls is not a "typical" interval. To give a short
explanation note that the probability of t > 0 lying in a large interval is larger than the
probability of t being contained in a short interval. This bias causes the selected interval to
be on the average twice as long as a typical interval.

Remark: Alternatively, parts (a) and (b) can be established using the correspondence between Poisson
processes and Poisson point processes established in Theorem 7.2.
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