Applied Stochastic Processes

Solution sheet 14

Solution 14.1

(a) Yes, $\left(N_{t}\right)_{t>0}$ is a Poisson process with rate 3λ. Indeed, by superposition (Theorem 7.10), $\left(N_{t}^{2}+N_{t}^{3}\right)_{t \geq 0}$ is a Poisson process with rate 2λ, independent of $\left(N_{t}^{1}\right)_{t \geq 0}$. Again applying superposition, we deduce that $\left(N_{t}\right)_{t \geq 0}$ is a Poisson process with rate $\lambda+2 \lambda=3 \lambda$.
(b) It follows from Theorem 7.10 that the probability that the k 'th jump time of $\left(N_{t}\right)_{t \geq 0}$ is a jump time of $\left(N_{t}^{1}\right)_{t \geq 0}$ is equal to

$$
\frac{\lambda}{\lambda+2 \lambda}=\frac{1}{3} .
$$

(c) No, it is not a Poisson process since its jumps are of size 2 .

Solution 14.2

(a) Let us denote φ_{X} the characteristic function of X_{1}. For every $s \in \mathbb{R}$ we have that

$$
\begin{aligned}
\varphi_{Z_{t}}(s) & =\mathbb{E}\left[\exp \left(i s Z_{t}\right)\right]=\mathbb{E}\left[\exp \left(i s \sum_{k=1}^{N_{t}} X_{k}\right)\right]=\mathbb{E}\left[\sum_{j=0}^{\infty} \exp \left(i s \sum_{k=1}^{j} X_{k}\right) 1_{\left\{N_{t}=j\right\}}\right] \\
& \stackrel{(1)}{=} \sum_{j=0}^{\infty} \mathbb{E}\left[\exp \left(i s \sum_{k=1}^{j} X_{k}\right)\right] \cdot \mathbb{P}\left[N_{t}=j\right] \stackrel{(2)}{=} \sum_{j=0}^{\infty} \varphi_{X}(s)^{j} \cdot \frac{e^{-\lambda t}(\lambda t)^{j}}{j!} \\
& =\exp \left(\lambda t\left(\varphi_{X}(s)-1\right)\right) .
\end{aligned}
$$

In (1) we used the dominated convergence theorem and independence between N_{t} and the X_{i} 's. In (2) we used independence of the X_{i} 's and that $N_{t} \sim \operatorname{Pois}(\lambda t)$. We also used the convention that empty sums are equal to 0 .
(b) Note that for every $n \geq 2,0=t_{0}<t_{1}<\cdots<t_{n}<\infty$ and $A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})$

$$
\begin{align*}
& \mathbb{P}\left[Z_{t_{1}}-Z_{t_{0}} \in A_{1}, \ldots, Z_{t_{n}}-Z_{t_{n-1}} \in A_{n}\right]=\mathbb{P}\left[\sum_{k=N_{t_{0}}+1}^{N_{t_{1}}} X_{k} \in A_{1}, \ldots, \sum_{k=N_{t_{n-1}+1}}^{N_{t_{n}}} X_{k} \in A_{n}\right] \\
= & \sum_{\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}} \mathbb{P}\left[\sum_{k=1}^{i_{1}} X_{k} \in A_{1}, \ldots, \sum_{k=i_{1}+\cdots+i_{n-1}+1}^{i_{1}+\cdots i_{n}} X_{k} \in A_{n}\right] \mathbb{P}\left[N_{t_{1}}=i_{1}, \ldots, N_{t_{n}}-N_{t_{n-1}}=i_{n}\right], \tag{1}
\end{align*}
$$

where we used that $\left(N_{t}\right)_{t \geq 0}$ is independent of the X_{i} 's. Since the increments of a Poisson process are stationary, we have that for $h>0$

$$
\mathbb{P}\left[N_{t_{1}}=i_{1}, \ldots, N_{t_{n}}-N_{t_{n-1}}=i_{n}\right]=\mathbb{P}\left[N_{t_{1}+h}-N_{h}=i_{1}, \ldots, N_{t_{n}+h}-N_{t_{n-1}+h}=i_{n}\right] .
$$

Then, replacing this in (1), and coming back through the same steps, we obtain

$$
\mathbb{P}\left[Z_{t_{1}}-Z_{t_{0}} \in A_{1}, \ldots, Z_{t_{n}}-Z_{t_{n-1}} \in A_{n}\right]=\mathbb{P}\left[Z_{t_{1}+h}-Z_{t_{0}+h} \in A_{1}, \ldots, Z_{t_{n}+h}-Z_{t_{n-1}+h} \in A_{n}\right]
$$

i.e., $\left(Z_{t_{1}}-Z_{t_{0}}, \ldots, Z_{t_{n}}-Z_{t_{n-1}}\right) \stackrel{(d)}{=}\left(Z_{t_{1}+h}-Z_{t_{0}+h}, \ldots, Z_{t_{n}+h}-Z_{t_{n-1}+h}\right)$, and the process Z has stationary increments. If now we use the fact that the increments of the Poisson process $\left(N_{t}\right)_{t \geq 0}$ are independent, and that the random variables X_{i} 's are also independent, we have that (1) equals to

$$
\begin{aligned}
\prod_{j=1}^{n} \sum_{i_{j}=1}^{\infty} \mathbb{P}\left[\sum_{k=i_{1}+\cdots+i_{j-1}+1}^{i_{1}+\cdots+i_{j}} X_{k} \in A_{j}\right] \mathbb{P}\left[N_{t_{j}}-N_{t_{j-1}}=i_{j}\right] & =\prod_{j=1}^{n} \mathbb{P}\left[\sum_{k=N_{t_{j-1}}+1}^{N_{t_{j}}} X_{k} \in A_{j}\right] \\
& =\prod_{j=1}^{n} \mathbb{P}\left[Z_{t_{j}}-Z_{t_{j-1}} \in A_{j}\right]
\end{aligned}
$$

which means that Z has independent increments.
(c) Option 1: First, since $X_{k} \in\{0,1\}, k \geq 1, \mathbb{P}$-a.s., it follows that Z is a counting process. Second, since $X_{i} \sim \operatorname{Ber}(p)$, we have that $\varphi_{X}(s)=1+p\left(e^{i s}-1\right)$. Hence, using part (a), we have that $\varphi_{Z_{t}}(s)=\exp \left(\lambda p t\left(e^{i s}-1\right)\right)$ and therefore $Z_{t} \sim \operatorname{Pois}(\lambda p t)$. Since it also has independent and stationary increments by part (b), it follows that it has the same finite marginals as a Poisson process with rate λp, which concludes using part (iii) of Theorem 7.2.
Option 2: We note that in this case,

$$
Z_{t}=\sum_{k=1}^{N_{t}} X_{k}=\sum_{k=1}^{N_{t}} \mathbf{1}_{X_{k}=1}=\sum_{k \geq 1} \mathbf{1}_{S_{k} \leq t, X_{k}=1}
$$

It now follows from thinning (Theorem 7.8) that $\left(Z_{t}\right)_{t \geq 0}$ is a Poisson process with rate λp.

Solution 14.3

(a) First we will show that almost surely there exists n_{0} such that for all $n \geq n_{0}$ we have

$$
T_{n} \leq \frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)
$$

Set $E_{n}:=\left\{T_{n}>\frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)\right\}$, then

$$
\mathbb{P}\left[E_{n}\right]=\exp \left(-\lambda \frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)\right)=\left(\frac{\lambda}{n}\right)^{1+\varepsilon}
$$

hence $\sum_{n} \mathbb{P}\left[E_{n}\right]<\infty$ and therefore by Borel-Cantelli, we obtain $\mathbb{P}\left[\lim \sup _{n \rightarrow \infty} E_{n}\right]=0$. This means that for almost every ω, there is $n_{0}(\omega)$ such that for all $n \geq n_{0}(\omega)$ we have

$$
\max _{n_{0}(\omega) \leq k \leq n} T_{k}(\omega) \leq \frac{(1+\varepsilon)}{\lambda} \max _{n_{0}(\omega) \leq k \leq n} \log (k / \lambda)=\frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)
$$

Furthermore, we can choose $n_{1}(\omega) \geq n_{0}(\omega)$ such that

$$
\max _{1 \leq k \leq n_{0}(\omega)} T_{k}(\omega) \leq \frac{(1+\varepsilon)}{\lambda} \log \left(n_{1}(\omega) / \lambda\right)
$$

because log is a monotone function increasing to infinity. Therefore almost surely, there is n_{1} such that for all $n \geq n_{1}$, we have

$$
\max _{1 \leq k \leq n} T_{k}(\omega) \leq \frac{(1+\varepsilon)}{\lambda} \log (n / \lambda)
$$

(b) We have $\lim \sup _{t \rightarrow \infty} \frac{N_{t}+1}{t}=\lim \sup _{t \rightarrow \infty} \frac{N_{t}}{t}$ and

$$
\limsup _{t \rightarrow \infty} \frac{N_{t}}{t} \leq \limsup _{t \rightarrow \infty} \frac{N_{t}}{S_{N_{t}}}=\limsup _{k \rightarrow \infty} \frac{k}{S_{k}}=\lambda
$$

where we used in the last step that by the strong law of large numbers we have $S_{k} / k \rightarrow \frac{1}{\lambda}$ almost surely as $k \rightarrow \infty$. This implies that almost surely there is t_{0} such that for all $t>t_{0}$ we have

$$
\frac{N_{t}+1}{t} \leq(1+\varepsilon) \lambda
$$

(c) Almost surely for t large enough we have

$$
L_{t} \leq \max _{1 \leq k \leq N_{t}+1} T_{k} \leq \frac{(1+\varepsilon)}{\lambda} \log \left(\frac{N_{t}+1}{\lambda}\right) \leq \frac{(1+\varepsilon)}{\lambda} \log (t(1+\varepsilon))
$$

which yields $\lim \sup _{t \rightarrow \infty} \frac{L_{t}}{\log t} \leq \frac{(1+\varepsilon)}{\lambda}$. As $\varepsilon>0$ was arbitrarily chosen this yields the claim.

