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Solution 14.1

(a) Yes, (Nt)t≥0 is a Poisson process with rate 3λ. Indeed, by superposition (Theorem 7.10),
(N2

t + N3
t )t≥0 is a Poisson process with rate 2λ, independent of (N1

t )t≥0. Again applying
superposition, we deduce that (Nt)t≥0 is a Poisson process with rate λ+ 2λ = 3λ.

(b) It follows from Theorem 7.10 that the probability that the k’th jump time of (Nt)t≥0 is a
jump time of (N1

t )t≥0 is equal to
λ

λ+ 2λ = 1
3 .

(c) No, it is not a Poisson process since its jumps are of size 2.

Solution 14.2

(a) Let us denote ϕX the characteristic function of X1. For every s ∈ R we have that

ϕZt
(s) = E[exp(isZt)] = E

[
exp

(
is

Nt∑
k=1

Xk

)]
= E

 ∞∑
j=0

exp
(
is

j∑
k=1

Xk

)
1{Nt=j}


(1)=

∞∑
j=0

E

[
exp

(
is

j∑
k=1

Xk

)]
· P[Nt = j] (2)=

∞∑
j=0

ϕX(s)j · e
−λt(λt)j

j!

= exp(λt(ϕX(s)− 1)).

In (1) we used the dominated convergence theorem and independence between Nt and the
Xi’s. In (2) we used independence of the Xi’s and that Nt ∼ Pois(λt). We also used the
convention that empty sums are equal to 0.

(b) Note that for every n ≥ 2, 0 = t0 < t1 < · · · < tn <∞ and A1, . . . , An ∈ B(R)

P[Zt1 − Zt0 ∈ A1, . . . , Ztn − Ztn−1 ∈ An] = P

 Nt1∑
k=Nt0 +1

Xk ∈ A1, . . . ,

Ntn∑
k=Ntn−1 +1

Xk ∈ An


=

∑
(i1,...,in)∈Nn

P

 i1∑
k=1

Xk ∈ A1, . . . ,

i1+···in∑
k=i1+···+in−1+1

Xk ∈ An

P[Nt1 = i1, . . . , Ntn −Ntn−1 = in],

(1)

where we used that (Nt)t≥0 is independent of the Xi’s. Since the increments of a Poisson
process are stationary, we have that for h > 0

P[Nt1 = i1, . . . , Ntn −Ntn−1 = in] = P[Nt1+h −Nh = i1, . . . , Ntn+h −Ntn−1+h = in].

Then, replacing this in (1), and coming back through the same steps, we obtain

P[Zt1 −Zt0 ∈ A1, . . . , Ztn −Ztn−1 ∈ An] = P[Zt1+h−Zt0+h ∈ A1, . . . , Ztn+h−Ztn−1+h ∈ An]
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i.e., (Zt1 −Zt0 , . . . , Ztn −Ztn−1) (d)= (Zt1+h−Zt0+h, . . . , Ztn+h−Ztn−1+h), and the process Z
has stationary increments. If now we use the fact that the increments of the Poisson process
(Nt)t≥0 are independent, and that the random variables Xi’s are also independent, we have
that (1) equals to

n∏
j=1

∞∑
ij=1

P

 i1+···+ij∑
k=i1+···+ij−1+1

Xk ∈ Aj

P[Ntj −Ntj−1 = ij ] =
n∏
j=1

P

 Ntj∑
k=Ntj−1 +1

Xk ∈ Aj


=

n∏
j=1

P[Ztj − Ztj−1 ∈ Aj ],

which means that Z has independent increments.

(c) Option 1: First, since Xk ∈ {0, 1}, k ≥ 1, P-a.s., it follows that Z is a counting process.
Second, since Xi ∼ Ber(p), we have that ϕX(s) = 1 + p(eis − 1). Hence, using part (a),
we have that ϕZt

(s) = exp(λpt(eis − 1)) and therefore Zt ∼ Pois(λpt). Since it also has
independent and stationary increments by part (b), it follows that it has the same finite
marginals as a Poisson process with rate λp, which concludes using part (iii) of Theorem 7.2.
Option 2: We note that in this case,

Zt =
Nt∑
k=1

Xk =
Nt∑
k=1

1Xk=1 =
∑
k≥1

1Sk≤t,Xk=1.

It now follows from thinning (Theorem 7.8) that (Zt)t≥0 is a Poisson process with rate λp.

Solution 14.3

(a) First we will show that almost surely there exists n0 such that for all n ≥ n0 we have

Tn ≤
(1 + ε)
λ

log(n/λ).

Set En := {Tn > (1+ε)
λ log(n/λ)}, then

P[En] = exp
(
−λ (1 + ε)

λ
log(n/λ)

)
=
(
λ

n

)1+ε
,

hence
∑
n P[En] <∞ and therefore by Borel-Cantelli, we obtain P[lim supn→∞En] = 0. This

means that for almost every ω, there is n0(ω) such that for all n ≥ n0(ω) we have

max
n0(ω)≤k≤n

Tk(ω) ≤ (1 + ε)
λ

max
n0(ω)≤k≤n

log(k/λ) = (1 + ε)
λ

log(n/λ).

Furthermore, we can choose n1(ω) ≥ n0(ω) such that

max
1≤k≤n0(ω)

Tk(ω) ≤ (1 + ε)
λ

log(n1(ω)/λ),

because log is a monotone function increasing to infinity. Therefore almost surely, there is n1
such that for all n ≥ n1, we have

max
1≤k≤n

Tk(ω) ≤ (1 + ε)
λ

log(n/λ).
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(b) We have lim supt→∞ Nt+1
t = lim supt→∞ Nt

t and

lim sup
t→∞

Nt
t
≤ lim sup

t→∞

Nt
SNt

= lim sup
k→∞

k

Sk
= λ,

where we used in the last step that by the strong law of large numbers we have Sk/k → 1
λ

almost surely as k →∞. This implies that almost surely there is t0 such that for all t > t0
we have

Nt + 1
t

≤ (1 + ε)λ.

(c) Almost surely for t large enough we have

Lt ≤ max
1≤k≤Nt+1

Tk ≤
(1 + ε)
λ

log
(
Nt + 1
λ

)
≤ (1 + ε)

λ
log(t(1 + ε)),

which yields lim supt→∞ Lt

log t ≤
(1+ε)
λ . As ε > 0 was arbitrarily chosen this yields the claim.
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