Applied Stochastic Processes

Solution sheet 2

Solution 2.1

(a) Under the measure \mathbf{P}_{x}, we have $X_{0} \sim \delta^{x}$. We use Definition 1.3 to obtain

$$
\begin{aligned}
& \mathbf{P}_{x}\left[X_{1}=y, X_{0}=x\right]=\delta^{x}(x) \cdot p_{x y}=p_{x y}, \\
& \mathbf{P}_{x}\left[X_{1}=x, X_{0}=y\right]=\delta^{x}(y) \cdot p_{y x}= \begin{cases}0 & \text { if } x \neq y \\
p_{x x} & \text { if } x=y\end{cases}
\end{aligned}
$$

(b) We apply the simple Markov property with $k=n, Z=1$ and $f\left(\left(X_{k+m}\right)_{m \geq 0}\right)=\mathbb{1}_{X_{k+2}=z, X_{k+1}=y}$ to obtain

$$
\mathbf{P}_{x}\left[X_{n+2}=z, X_{n+1}=y \mid X_{n}=x\right]=\mathbf{E}_{x}\left[\mathbb{1}_{X_{2}=z, X_{1}=y}\right]=\mathbf{P}_{x}\left[X_{2}=z, X_{1}=y\right]=p_{x y} \cdot p_{y z} .
$$

By definition of the n-step transition probability, we obtain

$$
\begin{aligned}
\mathbf{P}_{x}\left[X_{n+2}=z, X_{n+1}=y, X_{n}=x\right] & =p_{x x}^{(n)} \cdot p_{x y} \cdot p_{y z} \\
& =\sum_{x_{1}, \ldots, x_{n-1} \in S} p_{x x_{1}} \cdot \ldots p_{x_{n-1} x} \cdot p_{x y} \cdot p_{y z}
\end{aligned}
$$

(c)

$$
\begin{array}{ll}
\mathbf{P}_{1}\left[X_{1}=3\right]=p_{13}=0 & \mathbf{P}_{1}\left[X_{2}=3\right]=p_{12} \cdot p_{23}=1 / 4 \\
\mathbf{P}_{1}\left[X_{3}=3\right]=0 & \mathbf{P}_{1}\left[X_{4}=3\right]=\binom{4}{1} \cdot 1 / 16=1 / 4
\end{array}
$$

In the third case, we used that there exits no nearest-neighbor walk on \mathbb{Z} from 1 to 3 of length 3. In the fourth case, we used that every nearest-neighbor path on \mathbb{Z} from 1 to 3 of length 4 does exactly 3 steps " +1 " and 1 step " -1 ". Each such path has probability $1 / 16$ and there are $\binom{4}{1}$ ways to choose the position of the step " -1 ".
(d) First, we note that there exists no nearest-neighbor walk on \mathbb{Z} from 0 to 0 of odd length. Hence, for n odd, we obtain $\mathbf{P}_{0}\left[X_{n}=0\right]=0$. Second, for n even, a nearest-neighbor walk on \mathbb{Z} from 0 to 0 does exactly $n / 2$ steps " +1 " and $n / 2$ steps " -1 ". Hence, there are $\binom{n}{n / 2}$ ways to choose the positions of the steps " -1 ", and we obtain

$$
\mathbf{P}_{0}\left[X_{n}=0\right]=\binom{n}{n / 2} 2^{-n} .
$$

Solution 2.2

(a) By Chapman-Kolmogorov (Proposition 1.8), we have

$$
p_{0 x}^{(2 n)}=\sum_{y \in S} p_{0 y}^{(n)} \cdot p_{y x}^{(n)}
$$

Using the Chauchy-Schwartz inequality, we obtain

$$
p_{0 x}^{(2 n)}=\sum_{y \in S} p_{0 y}^{(n)} \cdot p_{y x}^{(n)} \leq \sqrt{\left(\sum_{y \in S}\left(p_{0 y}^{(n)}\right)^{2}\right) \cdot\left(\sum_{y \in S}\left(p_{y x}^{(n)}\right)^{2}\right)}
$$

(b) Since the transition probability of the SRW is symmetric with respect to permuting x and y, i.e. $p_{x y}=p_{y x}$, we obtain

$$
\sum_{y \in S}\left(p_{0 y}^{(n)}\right)^{2}=\sum_{y \in S} p_{0 y}^{(n)} \cdot p_{y 0}^{(n)}=p_{00}^{(2 n)}
$$

where we again used Chapman-Kolmogorov. Analogously,

$$
\sum_{y \in S}\left(p_{y x}^{(n)}\right)^{2}=\sum_{y \in S} p_{x y}^{(n)} \cdot p_{y x}^{(n)}=p_{x x}^{(2 n)}
$$

Combining all previous steps, we obtain

$$
p_{0 x}^{(2 n)} \leq \sqrt{\left(\sum_{y \in S}\left(p_{0 y}^{(n)}\right)^{2}\right) \cdot\left(\sum_{y \in S}\left(p_{y x}^{(n)}\right)^{2}\right)}=\sqrt{p_{00}^{(2 n)} \cdot p_{x x}^{(2 n)}}=p_{00}^{(2 n)}
$$

where we used $p_{00}^{(2 n)}=p_{x x}^{(2 n)}$ in the last step.

Solution 2.3

Under $\mathbf{P}_{0},\left(X_{n}\right)_{n \geq 0}$ is a simple random walk (SRW) starting at 0 . For $i \in \mathbb{Z}$ and $k \geq 0$,

$$
\begin{aligned}
\mathbf{P}_{0}\left[Z^{\prime}=k \mid X_{10}=i\right] & =\mathbf{P}_{0}\left[\left(\sum_{n=10}^{20} \mathbb{1}_{X_{n}=i}\right)=k \mid X_{10}=i\right]=\mathbf{P}_{i}\left[\left(\sum_{n=0}^{10} \mathbb{1}_{X_{n}=i}\right)=k\right] \\
& =\mathbf{P}_{0}\left[\left(\sum_{n=0}^{10} \mathbb{1}_{X_{n}=0}\right)=k\right]=\mathbf{P}_{0}[Z=k]
\end{aligned}
$$

where the second equality follows from the simple Markov property and the third equality follows since $\left(i+X_{n}\right)_{n \geq 0}$ is a SRW starting at i (under \mathbf{P}_{0}). Since the right-hand side does not depend on i, it directly follows that

$$
\mathbf{P}_{0}\left[Z^{\prime}=k\right]=\sum_{i \in \mathbb{Z}} \mathbf{P}_{0}\left[Z^{\prime}=k \mid X_{10}=i\right] \cdot \mathbf{P}_{0}\left[X_{10}=i\right]=\mathbf{P}_{0}[Z=k],
$$

and so Z and Z^{\prime} have the same distribution. Furthermore, we see that Z^{\prime} and X_{10} are independent.The Markov property directly implies that Z and Z^{\prime} are conditionally independent given $\left\{X_{10}=i\right\}$. Therefore, Z and Z^{\prime} are independent as the following computation shows:

$$
\begin{aligned}
\mathbf{P}_{0}\left[Z=k, Z^{\prime}=\ell\right] & =\sum_{i \in \mathbb{Z}} \mathbf{P}_{0}\left[Z=k, Z^{\prime}=\ell \mid X_{10}=i\right] \cdot \mathbf{P}_{0}\left[X_{10}=i\right] \\
& =\sum_{i \in \mathbb{Z}} \mathbf{P}_{0}\left[Z=k \mid X_{10}=i\right] \cdot \mathbf{P}_{0}\left[Z^{\prime}=\ell \mid X_{10}=i\right] \cdot \mathbf{P}_{0}\left[X_{10}=i\right] \\
& =\mathbf{P}_{0}\left[Z^{\prime}=\ell\right] \cdot\left(\sum_{i \in \mathbb{Z}} \mathbf{P}_{0}\left[Z=k \mid X_{10}=i\right] \cdot \mathbf{P}_{0}\left[X_{10}=i\right]\right) \\
& =\mathbf{P}_{0}\left[Z^{\prime}=\ell\right] \cdot \mathbf{P}_{0}[Z=k]
\end{aligned}
$$

Solution 2.4

(a) We establish the inequality by induction on k. For $k=0$, the inequality is trivial. For $k \geq 1$, it follows from the simple Markov property that

$$
\begin{aligned}
& \mathbf{P}_{0}\left[H_{-N, N}>k \cdot N\right] \\
& =\sum_{-N+1 \leq x_{1}, \ldots, x_{(k-1) N} \leq N-1} \mathbf{P}_{0}\left[H_{-N, N}>k \cdot N, X_{1}=x_{1}, \ldots, X_{(k-1) N}=x_{(k-1) N}\right] \\
& =\sum_{-N+1 \leq x_{1}, \ldots, x_{(k-1) N} \leq N-1} \mathbf{P}_{x_{(k-1) N}}\left[H_{-N, N}>N\right] \cdot \mathbf{P}_{0}\left[X_{1}=x_{1}, \ldots, X_{(k-1) N}=x_{(k-1) N}\right]
\end{aligned}
$$

Since the distance from any $x \in\{-N+1, \ldots, N-1\}$ to either N or $-N$ is at most N, it follows that $\mathbf{P}_{x}\left[H_{-N, N} \leq N\right] \geq 2^{-N}$. Thus,

$$
\begin{aligned}
& \mathbf{P}_{0}\left[H_{-N, N}>k \cdot N\right] \\
& \leq\left(1-2^{-N}\right) \cdot \sum_{-N+1 \leq x_{1}, \ldots, x_{(k-1) N} \leq N-1} \mathbf{P}_{0}\left[X_{1}=x_{1}, \ldots, X_{(k-1) N}=x_{(k-1) N}\right] \\
& =\left(1-2^{-N}\right) \cdot \mathbf{P}_{0}\left[H_{-N, N}>(k-1) \cdot N\right] \leq\left(1-2^{-N}\right)^{k}
\end{aligned}
$$

where we used the induction hypothesis in the last step.
We compute

$$
\mathbf{E}_{0}\left[H_{-N, N}\right]=\sum_{\ell=0}^{\infty} \mathbf{P}_{0}\left[H_{-N, N}>\ell\right] \leq \sum_{k=0}^{\infty} N \cdot \underbrace{\mathbf{P}_{0}\left[H_{-N, N}>k \cdot N\right]}_{\left(1-2^{-N}\right)^{k}}=N \cdot 2^{N}
$$

(b) Assume towards a contradiction that $\mathbf{E}_{x}\left[H_{-N, N}\right]=\infty$ for some $x \in\{-N, \ldots, N\}$. Without loss of generality, let us assume that x is a non-negative integer. Then $p_{0 x}^{(x)}=2^{-x}$, and so by the simple Markov property

$$
\begin{aligned}
\mathbf{E}_{0}\left[H_{-N, N}\right] & \geq \mathbf{E}_{0}\left[H_{-N, N} \cdot \mathbb{1}_{X_{1}=1, \ldots, X_{x}=x}\right] \\
& =\underbrace{\mathbf{E}_{x}\left[\left(H_{-N, N}+x\right)\right]}_{=\infty} \cdot \underbrace{\mathbf{P}_{0}\left[X_{1}=1, \ldots, X_{x}=x\right]}_{=2^{-x}}=\infty
\end{aligned}
$$

which contradicts the result of (a).
(c) First, we note that by (b), the function $f:\{-N, \ldots, N\} \rightarrow \mathbb{R}_{+}$, given by

$$
f(x)=\mathbf{E}_{x}\left[H_{-N, N}\right],
$$

is well-defined. Moreover, f is even (i.e. $f(x)=f(-x)$) due to the symmetry of the SRW, and it has boundary values $f(-N)=f(N)=0$. For $x \in\{-N+1, \ldots, N-1\}$,

$$
\begin{aligned}
f(x) & =\mathbf{E}_{x}\left[H_{-N, N}\right]=\mathbf{E}_{x}\left[H_{-N, N} \cdot \mathbb{1}_{X_{1}=x-1}\right]+\mathbf{E}_{x}\left[H_{-N, N} \cdot \mathbb{1}_{X_{1}=x+1}\right] \\
& =\mathbf{E}_{x-1}\left[H_{-N, N}+1\right] \cdot \mathbf{P}_{x}\left[X_{1}=x-1\right]+\mathbf{E}_{x+1}\left[H_{-N, N}+1\right] \cdot \mathbf{P}_{x}\left[X_{1}=x+1\right] \\
& =(f(x-1)+1) \cdot \frac{1}{2}+(f(x+1)+1) \cdot \frac{1}{2}=\frac{f(x-1)+f(x+1)}{2}+1
\end{aligned}
$$

Equivalently, for every $x \in\{-N+1, \ldots, N-1\}$,

$$
f(x)-f(x-1)=f(x+1)-f(x)+2
$$

Let $n \geq 0$. Summing over all $x \in\{-n, \ldots, n\}$, it follows that

$$
\begin{aligned}
f(n)-f(-n-1) & =\sum_{x=-n}^{n}(f(x)-f(x-1)) \\
& =\sum_{x=-n}^{n}(f(x+1)-f(x)+2)=f(n+1)-f(-n)+2(2 n+1)
\end{aligned}
$$

Thus, since f is even, we obtain

$$
f(n)=f(n+1)+(2 n+1)
$$

Using $f(N)=0$, we inductively obtain

$$
\begin{aligned}
f(n) & =\sum_{m=n}^{N-1}(2 m+1)=2 \cdot\left(\sum_{m=n}^{N-1} m\right)+(N-n) \\
& =2 \cdot\left(\frac{N(N-1)}{2}-\frac{n(n-1}{2}\right)+(N-n) \\
& =N^{2}-n^{2} .
\end{aligned}
$$

In particular, $f(0)=N^{2}$, which is what we wanted to show.
Remark: Another strategy would be to show that the function $g:\{-N, \ldots, N\} \rightarrow \mathbb{R}_{+}$, defined by

$$
g(x)=f(x)+x^{2}
$$

is harmonic in the interior of $\{-N, \ldots, N\}$ and satisfies $g(-N)=g(N)=N^{2}$. Using the uniqueness of the solution to the Dirichlet problem, i.e. the fact that there is a unique harmonic function $h:\{-N, \ldots, N\} \rightarrow \mathbb{R}_{+}$satisfying the boundary condition $h(-N)=h(N)=N^{2}$, it then follows that $g(x)=N^{2}$ for every $x \in\{-N, \ldots, N\}$. Thus, $f(x)=N^{2}-x^{2}$ for every $x \in\{-N, \ldots, N\}$.

Solution 2.5

(a) For E is finite, we choose the uniform measure, i.e. $\mu(x):=|E|^{-1}$ for every $x \in E$. For E countably infinite, we assume without loss of generality that $E=\{1,2,3, \ldots\}$. We note that

$$
\sum_{n \geq 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}<\infty
$$

and choose $\mu(n):=6 /(n \pi)^{2}$ for every $n \geq 1$.
(b) Define μ to be the law of X_{0} and set

$$
p_{x y}= \begin{cases}\mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right] & \text { if } \exists n: \mathbb{P}\left[X_{n}=x\right]>0 \\ \mathbb{1}_{x=y} & \text { otherwise }\end{cases}
$$

By homogeneity, $p_{x y}$ is well-defined. Furthermore, for every $x_{0}, \ldots, x_{n} \in S$, we have

$$
\begin{aligned}
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right] & =\underbrace{\mathbb{P}\left[X_{0}=x_{0}\right]}_{=\mu\left(x_{0}\right)} \cdot \prod_{i=1}^{n} \underbrace{\mathbb{P}\left[X_{i}=x_{i} \mid X_{0}=x_{0}, \ldots, X_{i-1}=x_{i-1}\right]}_{=\mathbb{P}\left[X_{i}=x_{i} \mid X_{i-1}=x_{i-1}\right]=p_{x_{i-1} x_{i}}} \\
& =\mu\left(x_{0}\right) \cdot p_{x_{0} x_{1}} \cdot \ldots \cdot p_{x_{n-1} x_{n}},
\end{aligned}
$$

where we used the 1-step Markov property and the definitions of μ and P.
It remains to check that P is a transition probability. Let $x \in S$. If there exists $n \geq 0$ such that $\mathbb{P}\left[X_{n}=x\right]>0$, then

$$
\sum_{y \in E} p_{x y}=\sum_{y \in E} \mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right]=1
$$

Otherwise,

$$
\sum_{y \in E} p_{x y}=\sum_{y \in E} \mathbb{1}_{x=y}=1
$$

Solution 2.6

(a) Based on the definition of \mathcal{F}_{T} and T being an $\left(\mathcal{F}_{n}\right)$-stopping time, we obtain the following chain of equivalences:

$$
Z \text { is } \mathcal{F}_{T} \text {-measurable }
$$

$\Longleftrightarrow \forall a \in \mathbb{R},\{Z \leq a\} \in \mathcal{F}_{T}$
$\Longleftrightarrow \forall a \in \mathbb{R}, \forall n \in \mathbb{N},\{Z \leq a\} \cap\{T=n\} \in \mathcal{F}_{n}$
$\Longleftrightarrow \forall n \in \mathbb{N}, Z \cdot \mathbb{1}_{T=n}$ is \mathcal{F}_{n}-measurable
Note that for $a \geq 0,\left\{Z \cdot \mathbb{1}_{T=n} \leq a\right\}=(\{Z \leq a\} \cap\{T=n\}) \cup\{T=n\}^{c}$. To establish the last equivalence, it then suffices to note that $\{T=n\} \in \mathcal{F}_{n}$ by definition of an $\left(\mathcal{F}_{n}\right)$-stopping time.
(b) Using the strong Markov property and $\mathrm{P}_{\mu}[T<\infty]=1$, we obtain

$$
\begin{aligned}
\mathrm{E}_{\mu}\left[f\left(\left(X_{T+n}\right)_{n \geq 0}\right) \cdot Z \mid X_{T}=x\right] & =\frac{\mathrm{E}_{\mu}\left[f\left(\left(X_{T+n}\right)_{n \geq 0}\right) \cdot Z \cdot \mathbb{1}_{X_{T}=x}\right]}{\mathrm{P}_{\mu}\left[X_{T}=x\right]} \\
& =\frac{\mathrm{E}_{\mu}\left[f\left(\left(X_{T+n}\right)_{n \geq 0}\right) \cdot Z \cdot \mathbb{1}_{T<\infty, X_{T}=x}\right]}{\mathrm{P}_{\mu}\left[T<\infty, X_{T}=x\right]} \\
& =\mathrm{E}_{\mu}\left[f\left(\left(X_{T+n}\right)_{n \geq 0}\right) \cdot Z \mid T<\infty, X_{T}=x\right] \\
& =\mathrm{E}_{x}\left[f\left(\left(X_{n}\right)_{n \geq 0}\right)\right] \cdot \mathrm{E}_{\mu}\left[Z \mid T<\infty, X_{T}=x\right] \\
& =\mathrm{E}_{x}\left[f\left(\left(X_{n}\right)_{n \geq 0}\right)\right] \cdot \mathrm{E}_{\mu}\left[Z \mid X_{T}=x\right]
\end{aligned}
$$

Solution 2.7 Let $x \in C$. We have $\mathbf{P}_{x}\left[\tau_{C}>k N\right]=\mathbf{P}_{x}[0>k N]=0$, and so the inequality holds true for all $k \geq 0$.

Let $x \in S \backslash C$. The inequality is trivial for $k=0$. For $k \geq 1$, we prove it by induction over k. For $k=1$, we have

$$
\begin{equation*}
\mathbf{P}_{x}\left[\tau_{C}>N\right] \leq \mathbf{P}_{x}\left[\tau_{C}>n(x)\right]=1-\mathbf{P}_{x}\left[\tau_{C} \leq n(x)\right]=1-\mathbf{P}_{x}\left[X_{n(x)} \in C\right] \leq 1-\varepsilon \tag{1}
\end{equation*}
$$

For $k \geq 2$, it follows from the Markov property that

$$
\begin{aligned}
\mathbf{P}_{x}\left[\tau_{C}>k N\right] & =\sum_{y_{1}, \ldots, y_{(k-1) N} \in S \backslash C} \mathbf{P}_{x}\left[\tau_{C}>k N, X_{1}=y_{1}, \ldots, X_{(k-1) N}=y_{(k-1) N}\right] \\
& =\sum_{y_{1}, \ldots, y_{(k-1) N} \in S \backslash C} \mathbf{P}_{y_{(k-1) N}}\left[\tau_{C}>N\right] \cdot \mathbf{P}\left[X_{1}=y_{1}, \ldots, X_{(k-1) N}=y_{(k-1) N}\right] .
\end{aligned}
$$

By (1), we have $P_{y_{(k-1) N}}\left[\tau_{C}>N\right] \leq 1-\varepsilon$ for all $y_{(k-1) N} \in S$, and so

$$
\begin{aligned}
\mathbf{P}_{x}\left[\tau_{C}>k N\right] & \leq(1-\varepsilon) \cdot \sum_{y_{1}, \ldots, y_{(k-1) N} \in S \backslash C} \mathbf{P}_{x}\left[X_{1}=y_{1}, \ldots, X_{(k-1) N}=y_{(k-1) N}\right] \\
& =(1-\varepsilon) \cdot \mathbf{P}_{x}\left[\tau_{C}>(k-1) N\right] \\
& \leq(1-\varepsilon)^{k},
\end{aligned}
$$

where we used the induction hypothesis $\mathbf{P}_{x}\left[\tau_{C}>(k-1) N\right] \leq(1-\varepsilon)^{k-1}$ in the last equation.

