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Solution 2.1

(a) Under the measure Px, we have X0 ∼ δx. We use Definition 1.3 to obtain

Px[X1 = y,X0 = x] = δx(x) · pxy = pxy,

Px[X1 = x,X0 = y] = δx(y) · pyx =
{

0 if x 6= y,

pxx if x = y.

(b) We apply the simple Markov property with k = n, Z = 1 and f((Xk+m)m≥0) = 1Xk+2=z,Xk+1=y
to obtain

Px[Xn+2 = z,Xn+1 = y|Xn = x] = Ex[1X2=z,X1=y] = Px[X2 = z,X1 = y] = pxy · pyz.

By definition of the n-step transition probability, we obtain

Px[Xn+2 = z,Xn+1 = y,Xn = x] = p(n)
xx · pxy · pyz

=
∑

x1,...,xn−1∈S
pxx1 · . . . pxn−1x · pxy · pyz.

(c)

P1[X1 = 3] = p13 = 0 P1[X2 = 3] = p12 · p23 = 1/4

P1[X3 = 3] = 0 P1[X4 = 3] =
(

4
1

)
· 1/16 = 1/4.

In the third case, we used that there exits no nearest-neighbor walk on Z from 1 to 3 of length
3. In the fourth case, we used that every nearest-neighbor path on Z from 1 to 3 of length 4
does exactly 3 steps “+1” and 1 step “-1”. Each such path has probability 1/16 and there are(4

1
)
ways to choose the position of the step “-1”.

(d) First, we note that there exists no nearest-neighbor walk on Z from 0 to 0 of odd length.
Hence, for n odd, we obtain P0[Xn = 0] = 0. Second, for n even, a nearest-neighbor walk on
Z from 0 to 0 does exactly n/2 steps “+1” and n/2 steps “-1”. Hence, there are

(
n
n/2
)
ways to

choose the positions of the steps “-1”, and we obtain

P0[Xn = 0] =
(
n

n/2

)
2−n.

Solution 2.2

(a) By Chapman-Kolmogorov (Proposition 1.8), we have

p
(2n)
0x =

∑
y∈S

p
(n)
0y · p(n)

yx .

Using the Chauchy-Schwartz inequality, we obtain

p
(2n)
0x =

∑
y∈S

p
(n)
0y · p(n)

yx ≤

√√√√√
∑
y∈S

(
p

(n)
0y

)2
 ·

∑
y∈S

(
p

(n)
yx

)2
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(b) Since the transition probability of the SRW is symmetric with respect to permuting x and y,
i.e. pxy = pyx, we obtain ∑

y∈S

(
p

(n)
0y

)2
=
∑
y∈S

p
(n)
0y · p

(n)
y0 = p

(2n)
00 ,

where we again used Chapman-Kolmogorov. Analogously,∑
y∈S

(
p(n)
yx

)2
=
∑
y∈S

p(n)
xy · p(n)

yx = p(2n)
xx .

Combining all previous steps, we obtain

p
(2n)
0x ≤

√√√√√
∑
y∈S

(
p

(n)
0y

)2
 ·

∑
y∈S

(
p

(n)
yx

)2
 =

√
p

(2n)
00 · p(2n)

xx = p
(2n)
00 ,

where we used p(2n)
00 = p

(2n)
xx in the last step.

Solution 2.3
Under P0, (Xn)n≥0 is a simple random walk (SRW) starting at 0. For i ∈ Z and k ≥ 0,

P0 [Z ′ = k|X10 = i] = P0

[( 20∑
n=10

1Xn=i

)
= k|X10 = i

]
= Pi

[( 10∑
n=0

1Xn=i

)
= k

]

= P0

[( 10∑
n=0

1Xn=0

)
= k

]
= P0 [Z = k]

where the second equality follows from the simple Markov property and the third equality follows
since (i+Xn)n≥0 is a SRW starting at i (under P0). Since the right-hand side does not depend on
i, it directly follows that

P0[Z ′ = k] =
∑
i∈Z

P0 [Z ′ = k|X10 = i] ·P0 [X10 = i] = P0 [Z = k] ,

and so Z and Z ′ have the same distribution. Furthermore, we see that Z ′ andX10 are independent.The
Markov property directly implies that Z and Z ′ are conditionally independent given {X10 = i}.
Therefore, Z and Z ′ are independent as the following computation shows:

P0[Z = k, Z ′ = `] =
∑
i∈Z

P0[Z = k, Z ′ = `|X10 = i] ·P0[X10 = i]

=
∑
i∈Z

P0[Z = k|X10 = i] ·P0[Z ′ = `|X10 = i] ·P0[X10 = i]

= P0[Z ′ = `] ·
(∑
i∈Z

P0[Z = k|X10 = i] ·P0[X10 = i]
)

= P0[Z ′ = `] ·P0[Z = k].
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Solution 2.4

(a) We establish the inequality by induction on k. For k = 0, the inequality is trivial. For k ≥ 1,
it follows from the simple Markov property that

P0[H−N,N > k ·N ]

=
∑

−N+1≤x1,...,x(k−1)N≤N−1
P0[H−N,N > k ·N,X1 = x1, . . . , X(k−1)N = x(k−1)N ]

=
∑

−N+1≤x1,...,x(k−1)N≤N−1
Px(k−1)N

[H−N,N > N ] ·P0[X1 = x1, . . . , X(k−1)N = x(k−1)N ]

Since the distance from any x ∈ {−N + 1, . . . , N − 1} to either N or −N is at most N , it
follows that Px[H−N,N ≤ N ] ≥ 2−N . Thus,

P0[H−N,N > k ·N ]

≤ (1− 2−N ) ·
∑

−N+1≤x1,...,x(k−1)N≤N−1
P0[X1 = x1, . . . , X(k−1)N = x(k−1)N ]

= (1− 2−N ) ·P0[H−N,N > (k − 1) ·N ] ≤ (1− 2−N )k,

where we used the induction hypothesis in the last step.
We compute

E0[H−N,N ] =
∞∑
`=0

P0[H−N,N > `] ≤
∞∑
k=0

N ·P0[H−N,N > k ·N ]︸ ︷︷ ︸
(1−2−N )k

= N · 2N .

(b) Assume towards a contradiction that Ex[H−N,N ] =∞ for some x ∈ {−N, . . . , N}. Without
loss of generality, let us assume that x is a non-negative integer. Then p(x)

0x = 2−x, and so by
the simple Markov property

E0[H−N,N ] ≥ E0[H−N,N · 1X1=1,...,Xx=x]
= Ex[(H−N,N + x)]︸ ︷︷ ︸

=∞

·P0[X1 = 1, . . . , Xx = x]︸ ︷︷ ︸
=2−x

=∞,

which contradicts the result of (a).

(c) First, we note that by (b), the function f : {−N, . . . , N} → R+, given by

f(x) = Ex[H−N,N ],

is well-defined. Moreover, f is even (i.e. f(x) = f(−x)) due to the symmetry of the SRW,
and it has boundary values f(−N) = f(N) = 0. For x ∈ {−N + 1, . . . , N − 1},

f(x) = Ex[H−N,N ] = Ex[H−N,N · 1X1=x−1] + Ex[H−N,N · 1X1=x+1]
= Ex−1[H−N,N + 1] ·Px[X1 = x− 1] + Ex+1[H−N,N + 1] ·Px[X1 = x+ 1]

= (f(x− 1) + 1) · 1
2 + (f(x+ 1) + 1) · 1

2 = f(x− 1) + f(x+ 1)
2 + 1

Equivalently, for every x ∈ {−N + 1, . . . , N − 1},

f(x)− f(x− 1) = f(x+ 1)− f(x) + 2.
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Let n ≥ 0. Summing over all x ∈ {−n, . . . , n}, it follows that

f(n)− f(−n− 1) =
n∑

x=−n
(f(x)− f(x− 1))

=
n∑

x=−n
(f(x+ 1)− f(x) + 2) = f(n+ 1)− f(−n) + 2(2n+ 1).

Thus, since f is even, we obtain

f(n) = f(n+ 1) + (2n+ 1).

Using f(N) = 0, we inductively obtain

f(n) =
N−1∑
m=n

(2m+ 1) = 2 ·
(
N−1∑
m=n

m

)
+ (N − n)

= 2 ·
(
N(N − 1)

2 − n(n− 1
2

)
+ (N − n)

= N2 − n2.

In particular, f(0) = N2, which is what we wanted to show.
Remark: Another strategy would be to show that the function g : {−N, . . . , N} → R+, defined
by

g(x) = f(x) + x2,

is harmonic in the interior of {−N, . . . , N} and satisfies g(−N) = g(N) = N2. Using the
uniqueness of the solution to the Dirichlet problem, i.e. the fact that there is a unique harmonic
function h : {−N, . . . , N} → R+ satisfying the boundary condition h(−N) = h(N) = N2, it
then follows that g(x) = N2 for every x ∈ {−N, . . . , N}. Thus, f(x) = N2 − x2 for every
x ∈ {−N, . . . , N}.
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Solution 2.5
(a) For E is finite, we choose the uniform measure, i.e. µ(x) := |E|−1 for every x ∈ E. For E

countably infinite, we assume without loss of generality that E = {1, 2, 3, . . .}. We note that∑
n≥1

1
n2 = π2

6 <∞

and choose µ(n) := 6/(nπ)2 for every n ≥ 1.

(b) Define µ to be the law of X0 and set

pxy =
{
P[Xn+1 = y|Xn = x] if ∃n : P[Xn = x] > 0,
1x=y otherwise.

By homogeneity, pxy is well-defined. Furthermore, for every x0, . . . , xn ∈ S, we have

P[X0 = x0, . . . , Xn = xn] = P[X0 = x0]︸ ︷︷ ︸
=µ(x0)

·
n∏
i=1

P[Xi = xi|X0 = x0, . . . , Xi−1 = xi−1]︸ ︷︷ ︸
=P[Xi=xi|Xi−1=xi−1]=pxi−1xi

= µ(x0) · px0x1 · . . . · pxn−1xn
,

where we used the 1-step Markov property and the definitions of µ and P .
It remains to check that P is a transition probability. Let x ∈ S. If there exists n ≥ 0 such
that P[Xn = x] > 0, then ∑

y∈E
pxy =

∑
y∈E

P[Xn+1 = y|Xn = x] = 1.

Otherwise, ∑
y∈E

pxy =
∑
y∈E

1x=y = 1.

Solution 2.6
(a) Based on the definition of FT and T being an (Fn)-stopping time, we obtain the following

chain of equivalences:

Z is FT -measurable
⇐⇒ ∀a ∈ R, {Z ≤ a} ∈ FT
⇐⇒ ∀a ∈ R,∀n ∈ N, {Z ≤ a} ∩ {T = n} ∈ Fn
⇐⇒ ∀n ∈ N, Z · 1T=n is Fn-measurable

Note that for a ≥ 0, {Z · 1T=n ≤ a} = ({Z ≤ a} ∩ {T = n}) ∪ {T = n}c. To establish the
last equivalence, it then suffices to note that {T = n} ∈ Fn by definition of an (Fn)-stopping
time.

(b) Using the strong Markov property and Pµ[T <∞] = 1, we obtain

Eµ [f ((XT+n)n≥0) · Z|XT = x] = Eµ [f ((XT+n)n≥0) · Z · 1XT =x]
Pµ[XT = x]

= Eµ [f ((XT+n)n≥0) · Z · 1T<∞,XT =x]
Pµ[T <∞, XT = x]

= Eµ [f ((XT+n)n≥0) · Z|T <∞, XT = x]
= Ex [f ((Xn)n≥0)] · Eµ[Z|T <∞, XT = x]
= Ex [f ((Xn)n≥0)] · Eµ [Z|XT = x] .
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Solution 2.7 Let x ∈ C. We have Px[τC > kN ] = Px[0 > kN ] = 0, and so the inequality holds
true for all k ≥ 0.

Let x ∈ S \ C. The inequality is trivial for k = 0. For k ≥ 1, we prove it by induction over k.
For k = 1, we have

Px[τC > N ] ≤ Px[τC > n(x)] = 1−Px[τC ≤ n(x)] = 1−Px[Xn(x) ∈ C] ≤ 1− ε. (1)

For k ≥ 2, it follows from the Markov property that

Px[τC > kN ] =
∑

y1,...,y(k−1)N∈S\C

Px[τC > kN,X1 = y1, . . . , X(k−1)N = y(k−1)N ]

=
∑

y1,...,y(k−1)N∈S\C

Py(k−1)N
[τC > N ] ·P[X1 = y1, . . . , X(k−1)N = y(k−1)N ].

By (1), we have Py(k−1)N
[τC > N ] ≤ 1− ε for all y(k−1)N ∈ S, and so

Px[τC > kN ] ≤ (1− ε) ·
∑

y1,...,y(k−1)N∈S\C

Px[X1 = y1, . . . , X(k−1)N = y(k−1)N ]

= (1− ε) ·Px[τC > (k − 1)N ]
≤ (1− ε)k,

where we used the induction hypothesis Px[τC > (k − 1)N ] ≤ (1− ε)k−1 in the last equation.
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