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Solution 2.1
(a) Under the measure P, we have X ~ §%. We use Definition 1.3 to obtain

P.[ X1 =y, Xo = 2] = 06°(2) - Doy = Pay»

- 0 if x # v,
Pm[XlzzyXOZy]zé (y)pyr{ . 7&
Pz iz =1y

(b) We apply the simple Markov property with & = n, Z = 1 and f((Xkt+m)m>0) = Lx, 0=z, X s1=y
to obtain

Pw[Xn—i-? = ZaXn—i-l = y|Xn = .I‘] = Ez[]lXQ:z,Xlzy] = Pa:[XQ = 27X1 = y] = Pzy ' Pyz-
By definition of the n-step transition probability, we obtain
Pm[Xn+2 = Z>Xn+1 =y, Xy ] pg;:) * Py * Pyz

= E Pzxy * -+ Pxy 1z Pxy " Pyz-
L1,y p—1E€S

Pi[X:=3]=p13=0 P[Xy =3]=pi2-p3 =1/4
4
Py[X5 =13 =0 Pi[X,=3] = (1) -1/16 = 1/4.

In the third case, we used that there exits no nearest-neighbor walk on Z from 1 to 3 of length
3. In the fourth case, we used that every nearest-neighbor path on Z from 1 to 3 of length 4
does exactly 3 steps “+1” and 1 step “-1”. Each such path has probability 1/16 and there are
(411) ways to choose the position of the step “-17.

(d) First, we note that there exists no nearest-neighbor walk on Z from 0 to 0 of odd length.
Hence, for n odd, we obtain Py[X,, = 0] = 0. Second, for n even, a nearest-neighbor walk on
7 from 0 to 0 does exactly n/2 steps “+1” and n/2 steps “-1”. Hence, there are (7:;2) ways to
choose the positions of the steps “-1”, and we obtain

Po[X, = 0] = <nT/LQ> 9 n,

Solution 2.2
(a) By Chapman-Kolmogorov (Proposition 1.8), we have
i =Dy - p.
yeSs

Using the Chauchy-Schwartz inequality, we obtain

2 = < (S E) ) [ )’

yeSs yeSs yes
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(b) Since the transition probability of the SRW is symmetric with respect to permuting x and y,
i.e. pyy = Dy, We obtain

2
n n n 2n
Z (pgy)) = Zpéy) 'pz(/o) = pho”;
yeS yeS
where we again used Chapman-Kolmogorov. Analogously,

2
> () = D0 pl) - pl) =l
yes yes

Combining all previous steps, we obtain

2 2 n)) 2 2 2 2
p(()zn) < Z (p(()Z)) ’ Z (pysi)) = P(()on) 'Pgmn = p(()on)»
yeSs yeS
where we used p(()%n) = pgc%cn) in the last step.

Solution 2.3
Under Py, (X,)n>0 is a simple random walk (SRW) starting at 0. For ¢ € Z and k > 0,

20 10
<Z ILXn—Z’) = k| X0 =1 (Z Ian—z) = k]
n=0

n=10
10
<Z ]lxn_o) =k
n=0
where the second equality follows from the simple Markov property and the third equality follows
since (¢ + X,,)n>0 is a SRW starting at ¢ (under Py). Since the right-hand side does not depend on
i, it directly follows that

Py [Z = k|X1p =1 =Py =P;

= Py =Py [Z =}

Po[Z' =k =) Po[Z' =k|X10=1i]- Py [X19 =i] =Po[Z = k],
i€Z

and so Z and Z’ have the same distribution. Furthermore, we see that Z’ and X1 are independent.The
Markov property directly implies that Z and Z’ are conditionally independent given {X19 = i}.
Therefore, Z and Z' are independent as the following computation shows:

Po[Z =k Z =)= Po[Z =k Z =Xy =1i]-Py[X1o = i]

iE€EZ
= Po[Z = k|X10 =] - Po[Z' = {|X19 = i] - Po[X10 = i]
V€7
=PyZ =1 (Z Po[Z = k|X1p = 1] - Po[X10 = i])
iE€EZ

=Py[Z =1 - Po|Z =k

2/6



Applied Stochastic Processes, FS 2023
D-MATH Solution sheet 2

Solution 2.4

(a) We establish the inequality by induction on k. For k = 0, the inequality is trivial. For k > 1,
it follows from the simple Markov property that

PO[H—N,N > k- N]

= Z Po[H_ NN >Fk-N, Xy =u1,...,X(-1)N = T(k—1)N]
—N+1§r1,...,m(k,1)N§N—1
= Z Poy ywH-nn >N - Po[Xi =m1,..., X(s—1)N = T(h—1)N]

—N+1<zq,..., I(k,l)NSNfl

Since the distance from any z € {—N +1,..., N — 1} to either N or —N is at most N, it
follows that P,[H_nyn < N] > 27V, Thus,
PO[HfN,N > k- N]

<@a-27Y)- Z Po[ X1 =21,..., X—1)N = Z(—1)N]
—N+1<z1,..,2(r—1)NSN—-1

=(1=27N) - Po[H_yn > (k—1) N < (1-27")F,

where we used the induction hypothesis in the last step.

We compute

Eo[H nyn|=) Po[H.yn > <Y N-Po[H.yn>k-Nj=N-2".
=0 k=0

(1—2-N)k

(b) Assume towards a contradiction that E,[H_n n] = oo for some z € {—N, ..., N}. Without

loss of generality, let us assume that x is a non-negative integer. Then p(()i) = 27" and so by
the simple Markov property

Eo[H-nNnN]) > Eo[H-n N - 1x,=1,... X,=a)
=E, [(H-nnv+2)]-PolXi=1,...,X; =2] =00,

=00 —2—x

which contradicts the result of (a).
(¢) First, we note that by (b), the function f: {—N,..., N} = Ry, given by
f(x) = E;[H_n n],

is well-defined. Moreover, f is even (i.e. f(z) = f(—=z)) due to the symmetry of the SRW,
and it has boundary values f(—N) = f(N)=0. Forx € {-N +1,...,N — 1},

f(@) =E [H- NN =Ez[H_-NnN - 1x,=¢—1] + Ex[H_n N - Lx;,—341]
— By [H vy +1-PoXi =2 — 1]+ Egp[H oyy +1] - Po[X1 =z + 1]
1 fla—1)+f(z+1)

= (fle-D 4D g+ (fe+1) 415 = !

+1

Equivalently, for every x € {—-N +1,...,N — 1},

f@)=fle=1)=flz+1) - flz)+2.
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Let n > 0. Summing over all z € {—n,...,n}, it follows that

n

fn) = f(=n—=1)= Y (f(&) = flz - 1))

=) (fle+1) = f(2)+2) = f(n+1) = f(=n) +2(2n + 1).

Thus, since f is even, we obtain
fln)=fn+1)+(2n+1).
Using f(IN) = 0, we inductively obtain

N-—-1 N-1
fn)=>Y (@m+1)=2 (Zm) + (N —n)

m=n m=n

:2.(N(N2_1) —”(”2_1)+(N—n)

= N2 - p2

In particular, f(0) = N2, which is what we wanted to show.
Remark: Another strategy would be to show that the function g : {—N,..., N} — R, defined
by

g(w) = f(z) +a?,
is harmonic in the interior of {—N, ..., N} and satisfies g(—N) = g(IN) = N2. Using the
uniqueness of the solution to the Dirichlet problem, i.e. the fact that there is a unique harmonic
function h : {—N,..., N} — R, satisfying the boundary condition h(—N) = h(N) = N2, it
then follows that g(x) = N2 for every x € {—N,...,N}. Thus, f(z) = N? — 22 for every
x€{=N,...,N}.
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Solution 2.5

(a) For E is finite, we choose the uniform measure, i.e. u(z) := |E|™" for every z € E. For E
countably infinite, we assume without loss of generality that E = {1,2,3,...}. We note that

IETRPE
n
n>1
and choose u(n) := 6/(nm)? for every n > 1.
(b) Define p to be the law of Xy and set

PXpq1 =yl Xp =2] if In:PX, =2z] >0,
Py = .
1=y otherwise.

By homogeneity, ps, is well-defined. Furthermore, for every zy,...,z, € S, we have

]P[XO =20, - - .,Xn = {L‘n] = IP[XO = 1‘0} HP[XZ = .T1|X0 = ZQy--- ,X,;l = 1‘1;1]
i=1

=u(zo) =P[X; =i |X;—1=2i—1]=Pe;_,a;
= p(Z0) " Prows "+ Pop_rns
where we used the 1-step Markov property and the definitions of x4 and P.
It remains to check that P is a transition probability. Let = € S. If there exists n > 0 such
that P[X,, = 2] > 0, then

Zpl’y = ZP[XnJrl =yl X,=2]=1

yeE yeE
Otherwise,
YBITED DERNEE
yeE yeE

Solution 2.6
(a) Based on the definition of Fr and T being an (F,,)-stopping time, we obtain the following

chain of equivalences:
Z is Fp-measurable
—VaeR {Z<a} e Fr
—VaeRVneN {Z<a}n{T=n}eF,
<~ VneN, Z 1p_, is F,-measurable
Note that for a > 0, {Z - 17—, < a} = ({Z < a} N{T = n}) U{T = n}c. To establish the

last equivalence, it then suffices to note that {T' = n} € F,, by definition of an (F,)-stopping
time.

(b) Using the strong Markov property and P, [T < oo] = 1, we obtain
Eu [f ((XT+7L)nZO) -z - lXsz]
Pyu[X7 = 1]
_ Eu[f (Xr4n)n>0) - Z - 11 coo Xp=a]
P,[T < oo, X1 = x]
E, lf (X74n)n>0) - Z|T < 00, X7 = ]
Ey [f ((Xn>n20)} : EH[Z‘T <00, X = aj]
E, [f (Xn)nz0)] - By [Z] X7 = 2.

E, Lf ((XT+n)7LZO) - Z| X7 = z]
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Solution 2.7 Let x € C. We have P [rc > kN| = P,[0 > kEN]| = 0, and so the inequality holds
true for all £ > 0.

Let z € S\ C. The inequality is trivial for k = 0. For k > 1, we prove it by induction over k.
For k =1, we have

P,lrc > N] < Pylre > n(z)] =1 - Pylrc <n(z)] =1 -Py[Xp,) €Ol <1-e (1)

For k > 2, it follows from the Markov property that

Pylrc > kN] = > P.lrc > kN, X1 =y1,.. ., X(h—1)N = Y(k—-1)N]
Y1se-Y(k—1)NES\C
= Z Py, yxlmc > N]-PXi=y1,..., X(e-1)N = Yh—1)N]-

Y1y Yh—1) N ES\C

By (1), we have P,

Yk—-1)N

[Tc > N] < 1—¢ for all yg_1)n € S, and so

P.[t7c >kN] < (1—¢)- Z P.[X1i=wy1,.... X(k—1)N = Y(k—1)N]
Y1, Yk—1)N ES\C

(1—2)-Pulre > (k— 1)N]

S (1 - E)ka

where we used the induction hypothesis P, [rc > (k — 1)N] < (1 — €)*~1 in the last equation.
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