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Solution 4.1

(a) The state a is recurrent since Pa[Ha <∞] ≥ Pa[Ha = 1] = 1. The state b is transient since
Pb[Hb <∞] = Pb[X1 = b] = 1/3 < 1.

(b) There are three communitation classes: C1 = {a}, C2 = {b, c} and C3 = {d, e}. The classes
C1 and C2 are transient, the class C3 is recurrent.

(c) No. By definition, an irreducible Markov chain has exactly one communication class.

(d) Yes. For example, take S to be countably infinite and define the transition probability P by
pxx = 1 for all x ∈ S. Then every state is recurrent and forms its own communication class.

Solution 4.2

(a) For all ε ≥ 0, a and b communicate since pab = pba = 1
2 .

(b) For all ε > 0, b and d communicate since p(2)
bd = ε · 2

3 and p(2)
db = 1

3 · ε. For ε = 0, it holds that
p

(n)
bd = 0 for all n ≥ 0, so b and d do not communicate.

(c) The Markov chain is irreducible if and only if ε > 0. This can be seen as in part (b).

Solution 4.3

(a) First, we note that X0 ∼ δ1. Second, we note that for all n ≥ 0 and for all k > 0 and ` ∈ N,
it follows from the definition of Xn+1 that

P[Xn+1 = `|Xn = k] = P

[
k∑

i=1
Zn+1

i = `

]
=

∑
z1,...,zk≥0: z1+...+zk=`

P [Z1 = z1, . . . , Zk = zk]

=
∑

z1,...,zk≥0: z1+...+zk=`

ν(z1) · . . . · ν(zk)

=: pkl.

For k = 0, we have P[Xn+1 = 0|Xn = 0] = 1 =: p00 for all n ≥ 1. Moreover, by the
independence of the (Zn

i )i,n≥1’s, we have for all x0, . . . , xn+1,

P[Xn+1 = xn+1|X0 = x0, . . . , Xn = xn] = P[Xn+1 = xn+1|Xn = xn],

whenever P[X0 = x0, . . . , Xn = xn] > 0. Consequently,

P[X0 = x0, . . . , Xn+1 = xn+1] = δ1
x0
· px0x1 · . . . · pxnxn+1 ,

and so we have shown that X is a Markov chain MC(δ1, P ) with the transition probability
P = (pxy)x,y∈N defined above.
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(b) C0 = {0} is a closed communication class and C1 = {1, 2, . . .} is a communication class that
is not closed. Since C0 ∪ C1 = E, there are no other communication classes.
To see that C0 = {0} is a closed communication class, it suffices to note that p00 = 1. To
see that C1 = {1, 2, . . .} is a communication class that is not closed, we make the following
observations: First, using ν(0), ν(1) > 0, we have pi,i−1 > 0 for all i ≥ 1, and so i → i− 1.
Second, using ν(0) + ν(1) < 1, there exists k ≥ 2 such that ν(k) > 0, and so for all i ≥ 1,
pi,ki > 0 and i→ ki. Combining these observations, i→ j for all i ≥ 1 and j ≥ 0.

(c) C0 is recurrent since P0[H0 = 1] = 1. C1 is transient, which follows from Corollary 2.14 in
Section 2.10. More precisely, since for i ≥ 1, i→ 0 but 0 6→ i, it follows that i is transient.

(d) If ν(0) = 0 and ν(1) < 1, then Xn+1 ≥ Xn almost surely for all n ≥ 0 and Xn+1 > Xn

with positive probability. Consequently, there are infinitely many communication classes:
C0 = {0}, C1 = {1}, C2 = {2}, etc. As before, the class C0 is recurrent and closed. The
classes C1, C2, . . . are transient and not closed.

Solution 4.4

(a) Since Xn can take values in {0, . . . , N}, we set S := {0, . . . , N}.
On the one hand, for x < N , we set

px,x+1 = 1− x

N
,

as in order for Xn to grow by 1, the randomly selected particle must be from container B;
this occurs with probability

# of particles in B
# of total particles = N − x

N
.

On the other hand, for x > 0, the only other option is for the amount of particles in A to
decrease by 1, which happens with probability x

N , and so

px,x−1 = x

N
.

Whenever |x−y| 6= 1 for x, y ∈ S, we set pxy = 0. It can easily be verified that P = (pxy)x,y∈S

defines a trasition probability.

(b) Our goal is to identify a stationary distribution; this would represent the equilibrium
distribution of particles. To this end, we try to find a reversible distribution π. By Proposition
3.1, we know that it would also be stationary.
By definition of reversibility, π needs to satisfy for all x ∈ {0, . . . , N − 1},

πxpx,x+1 = πx+1px+1,x.

We use this to calculate πx explicitly and see if this defines a proper distribution.

πx+1 =
πx(1− x

N )
x+1
N

= πx
N − x
x+ 1

(Induction)= π0
N · · · (N − x)

(x+ 1)! . (1)

Thus we find that πx =
(

N
x

)
π0. Since π should define a distribution, we must have

∑
x∈S πx = 1.

Hence we find

π0 =
(∑

x∈S

(
N

x

))−1

= 1
2N

. (2)
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Hence,

πx =
(
N

x

)
1

2N
,

the binomial distribution; which is (as we have shown) reversible, and thus stationary.

Solution 4.5

(a) First, we note that by definition, µx(y) ≥ 0 for every y ∈ S. Second, we prove the stationarity
of µx, i.e. for every y ∈ S, µx(y) =

∑
z∈E µx(z)pzy. Using the hint and the simple Markov

property, we obtain

∑
z∈S

µx(z)pzy =
∑
z∈S

∞∑
n=0

Px[Xn = z,Hx > n] · pzy

=
∑
z∈S

∞∑
n=0

Px[Xn = z,Xn+1 = y,Hx > n].

By Fubini,

∑
z∈E

µx(z)pzy =
∞∑

n=0

∑
z∈S

Px[Xn = z,Xn+1 = y,Hx > n]

=
∞∑

n=0
Px[Xn+1 = y,Hx > n]

= Ex[
Hx−1∑
n=0

1Xn+1=y] = µx(y),

where we have used in the last equality that Hx <∞ and X0 = XHx
= x Px-a.s.

Remark: If x would be transient, then Px[Hx <∞] < 1 and so the last equality fails if x = y.
Finally, we show that for every y ∈ S, µx(y) <∞. If x 6→ y, then µx(y) = 0. Otherwise, we
have x→ y, which implies y → x since x is recurrent. Hence, p(n)

yx > 0 for some n = n(y) ≥ 1.
By the stationarity of µx,

1 = µx(x) =
∑
y∈S

µx(y)p(n)
yx ,

and so µx(y) <∞.

(b) If x 6→ y, then µx(y) = 0. If x→ y, then we obtain

µx(y) = Ex[
Hx−1∑
n=0

1Xn=y] =
∞∑

k=1
Px[

Hx−1∑
n=0

1Xn=y ≥ k] =
∞∑

k=1
Px[Hy < Hx] ·Py[Hy < Hx]k−1

= Px[Hy < Hx] ·
∞∑

k=0
Py[Hy < Hx]k = Px[Hy < Hx]

Py[Hx < Hy] .

3 / 3


