Applied Stochastic Processes

Solution sheet 4

Solution 4.1

(a) The state a is recurrent since $\mathbf{P}_{a}\left[H_{a}<\infty\right] \geq \mathbf{P}_{a}\left[H_{a}=1\right]=1$. The state b is transient since $\mathbf{P}_{b}\left[H_{b}<\infty\right]=\mathbf{P}_{b}\left[X_{1}=b\right]=1 / 3<1$.
(b) There are three communitation classes: $C_{1}=\{a\}, C_{2}=\{b, c\}$ and $C_{3}=\{d, e\}$. The classes C_{1} and C_{2} are transient, the class C_{3} is recurrent.
(c) No. By definition, an irreducible Markov chain has exactly one communication class.
(d) Yes. For example, take S to be countably infinite and define the transition probability P by $p_{x x}=1$ for all $x \in S$. Then every state is recurrent and forms its own communication class.

Solution 4.2

(a) For all $\varepsilon \geq 0, a$ and b communicate since $p_{a b}=p_{b a}=\frac{1}{2}$.
(b) For all $\varepsilon>0, b$ and d communicate since $p_{b d}^{(2)}=\varepsilon \cdot \frac{2}{3}$ and $p_{d b}^{(2)}=\frac{1}{3} \cdot \varepsilon$. For $\varepsilon=0$, it holds that $p_{b d}^{(n)}=0$ for all $n \geq 0$, so b and d do not communicate.
(c) The Markov chain is irreducible if and only if $\varepsilon>0$. This can be seen as in part (b).

Solution 4.3

(a) First, we note that $X_{0} \sim \delta^{1}$. Second, we note that for all $n \geq 0$ and for all $k>0$ and $\ell \in \mathbb{N}$, it follows from the definition of X_{n+1} that

$$
\begin{aligned}
\mathbb{P}\left[X_{n+1}=\ell \mid X_{n}=k\right] & =\mathbb{P}\left[\sum_{i=1}^{k} Z_{i}^{n+1}=\ell\right] \\
& =\sum_{z_{1}, \ldots, z_{k} \geq 0: z_{1}+\ldots+z_{k}=\ell} \mathbb{P}\left[Z_{1}=z_{1}, \ldots, Z_{k}=z_{k}\right] \\
& =\sum_{z_{1}, \ldots, z_{k} \geq 0: z_{1}+\ldots+z_{k}=\ell} \nu\left(z_{1}\right) \cdot \ldots \cdot \nu\left(z_{k}\right) \\
& =: p_{k l} .
\end{aligned}
$$

For $k=0$, we have $\mathbb{P}\left[X_{n+1}=0 \mid X_{n}=0\right]=1=: p_{00}$ for all $n \geq 1$. Moreover, by the independence of the $\left(Z_{i}^{n}\right)_{i, n \geq 1}$'s, we have for all x_{0}, \ldots, x_{n+1},

$$
\mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right]=\mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right]
$$

whenever $\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n}=x_{n}\right]>0$. Consequently,

$$
\mathbb{P}\left[X_{0}=x_{0}, \ldots, X_{n+1}=x_{n+1}\right]=\delta_{x_{0}}^{1} \cdot p_{x_{0} x_{1}} \cdot \ldots \cdot p_{x_{n} x_{n+1}}
$$

and so we have shown that X is a Markov chain $\operatorname{MC}\left(\delta^{1}, P\right)$ with the transition probability $P=\left(p_{x y}\right)_{x, y \in \mathbb{N}}$ defined above.
(b) $C_{0}=\{0\}$ is a closed communication class and $C_{1}=\{1,2, \ldots\}$ is a communication class that is not closed. Since $C_{0} \cup C_{1}=E$, there are no other communication classes.
To see that $C_{0}=\{0\}$ is a closed communication class, it suffices to note that $p_{00}=1$. To see that $C_{1}=\{1,2, \ldots\}$ is a communication class that is not closed, we make the following observations: First, using $\nu(0), \nu(1)>0$, we have $p_{i, i-1}>0$ for all $i \geq 1$, and so $i \rightarrow i-1$. Second, using $\nu(0)+\nu(1)<1$, there exists $k \geq 2$ such that $\nu(k)>0$, and so for all $i \geq 1$, $p_{i, k i}>0$ and $i \rightarrow k i$. Combining these observations, $i \rightarrow j$ for all $i \geq 1$ and $j \geq 0$.
(c) C_{0} is recurrent since $\mathbf{P}_{0}\left[H_{0}=1\right]=1 . C_{1}$ is transient, which follows from Corollary 2.14 in Section 2.10. More precisely, since for $i \geq 1, i \rightarrow 0$ but $0 \nrightarrow i$, it follows that i is transient.
(d) If $\nu(0)=0$ and $\nu(1)<1$, then $X_{n+1} \geq X_{n}$ almost surely for all $n \geq 0$ and $X_{n+1}>X_{n}$ with positive probability. Consequently, there are infinitely many communication classes: $C_{0}=\{0\}, C_{1}=\{1\}, C_{2}=\{2\}$, etc. As before, the class C_{0} is recurrent and closed. The classes C_{1}, C_{2}, \ldots are transient and not closed.

Solution 4.4

(a) Since X_{n} can take values in $\{0, \ldots, N\}$, we set $S:=\{0, \ldots, N\}$.

On the one hand, for $x<N$, we set

$$
p_{x, x+1}=1-\frac{x}{N},
$$

as in order for X_{n} to grow by 1 , the randomly selected particle must be from container B; this occurs with probability

$$
\frac{\# \text { of particles in } B}{\# \text { of total particles }}=\frac{N-x}{N}
$$

On the other hand, for $x>0$, the only other option is for the amount of particles in A to decrease by 1 , which happens with probability $\frac{x}{N}$, and so

$$
p_{x, x-1}=\frac{x}{N}
$$

Whenever $|x-y| \neq 1$ for $x, y \in S$, we set $p_{x y}=0$. It can easily be verified that $P=\left(p_{x y}\right)_{x, y \in S}$ defines a trasition probability.
(b) Our goal is to identify a stationary distribution; this would represent the equilibrium distribution of particles. To this end, we try to find a reversible distribution π. By Proposition 3.1, we know that it would also be stationary.

By definition of reversibility, π needs to satisfy for all $x \in\{0, \ldots, N-1\}$,

$$
\pi_{x} p_{x, x+1}=\pi_{x+1} p_{x+1, x}
$$

We use this to calculate π_{x} explicitly and see if this defines a proper distribution.

$$
\begin{equation*}
\pi_{x+1}=\frac{\pi_{x}\left(1-\frac{x}{N}\right)}{\frac{x+1}{N}}=\pi_{x} \frac{N-x}{x+1} \stackrel{\text { (Induction) }}{=} \pi_{0} \frac{N \cdots(N-x)}{(x+1)!} . \tag{1}
\end{equation*}
$$

Thus we find that $\pi_{x}=\binom{N}{x} \pi_{0}$. Since π should define a distribution, we must have $\sum_{x \in S} \pi_{x}=1$. Hence we find

$$
\begin{equation*}
\pi_{0}=\left(\sum_{x \in S}\binom{N}{x}\right)^{-1}=\frac{1}{2^{N}} \tag{2}
\end{equation*}
$$

Hence,

$$
\pi_{x}=\binom{N}{x} \frac{1}{2^{N}}
$$

the binomial distribution; which is (as we have shown) reversible, and thus stationary.

Solution 4.5

(a) First, we note that by definition, $\mu_{x}(y) \geq 0$ for every $y \in S$. Second, we prove the stationarity of μ_{x}, i.e. for every $y \in S, \mu_{x}(y)=\sum_{z \in E} \mu_{x}(z) p_{z y}$. Using the hint and the simple Markov property, we obtain

$$
\begin{aligned}
\sum_{z \in S} \mu_{x}(z) p_{z y} & =\sum_{z \in S} \sum_{n=0}^{\infty} \mathbf{P}_{x}\left[X_{n}=z, H_{x}>n\right] \cdot p_{z y} \\
& =\sum_{z \in S} \sum_{n=0}^{\infty} \mathbf{P}_{x}\left[X_{n}=z, X_{n+1}=y, H_{x}>n\right]
\end{aligned}
$$

By Fubini,

$$
\begin{aligned}
\sum_{z \in E} \mu_{x}(z) p_{z y} & =\sum_{n=0}^{\infty} \sum_{z \in S} \mathbf{P}_{x}\left[X_{n}=z, X_{n+1}=y, H_{x}>n\right] \\
& =\sum_{n=0}^{\infty} \mathbf{P}_{x}\left[X_{n+1}=y, H_{x}>n\right] \\
& =\mathbf{E}_{x}\left[\sum_{n=0}^{H_{x}-1} \mathbf{1}_{X_{n+1}=y}\right]=\mu_{x}(y),
\end{aligned}
$$

where we have used in the last equality that $H_{x}<\infty$ and $X_{0}=X_{H_{x}}=x \mathbf{P}_{x}$-a.s.
Remark: If x would be transient, then $\mathbf{P}_{x}\left[H_{x}<\infty\right]<1$ and so the last equality fails if $x=y$.
Finally, we show that for every $y \in S, \mu_{x}(y)<\infty$. If $x \nrightarrow y$, then $\mu_{x}(y)=0$. Otherwise, we have $x \rightarrow y$, which implies $y \rightarrow x$ since x is recurrent. Hence, $p_{y x}^{(n)}>0$ for some $n=n(y) \geq 1$. By the stationarity of μ_{x},

$$
1=\mu_{x}(x)=\sum_{y \in S} \mu_{x}(y) p_{y x}^{(n)}
$$

and so $\mu_{x}(y)<\infty$.
(b) If $x \nrightarrow y$, then $\mu_{x}(y)=0$. If $x \rightarrow y$, then we obtain

$$
\begin{aligned}
\mu_{x}(y) & =\mathbf{E}_{x}\left[\sum_{n=0}^{H_{x}-1} \mathbf{1}_{X_{n}=y}\right]=\sum_{k=1}^{\infty} \mathbf{P}_{x}\left[\sum_{n=0}^{H_{x}-1} \mathbf{1}_{X_{n}=y} \geq k\right]=\sum_{k=1}^{\infty} \mathbf{P}_{x}\left[H_{y}<H_{x}\right] \cdot \mathbf{P}_{y}\left[H_{y}<H_{x}\right]^{k-1} \\
& =\mathbf{P}_{x}\left[H_{y}<H_{x}\right] \cdot \sum_{k=0}^{\infty} \mathbf{P}_{y}\left[H_{y}<H_{x}\right]^{k}=\frac{\mathbf{P}_{x}\left[H_{y}<H_{x}\right]}{\mathbf{P}_{y}\left[H_{x}<H_{y}\right]}
\end{aligned}
$$

