Applied Stochastic Processes

Solution sheet 5

Solution 5.1

(a) For all $\varepsilon \geq 0, \pi=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ is not reversible. It suffices to note that

$$
\pi_{c} p_{c d}=\frac{1}{6} \neq \frac{1}{12}=\pi_{d} p_{d c} .
$$

(b) $\pi=\left(\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right)$ is reversible if and only if $\varepsilon=0$. For $\varepsilon>0$, we note that

$$
\pi_{b} p_{b c}=\frac{1}{8} \cdot \varepsilon \neq \frac{1}{4} \cdot \varepsilon=\pi_{c} p_{c b} .
$$

For $\varepsilon=0$, we note that $\pi_{a} p_{a b}=\pi_{b} p_{b a}=\frac{1}{16}$ and $\pi_{c} p_{c d}=\pi_{d} p_{d c}=\frac{1}{6}$.
(c) $\pi=\left(\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\right)$ is stationary if and only if $\varepsilon=0$. For $\varepsilon=0$, it follows directly from (e) since reversible implies stationary. For $\varepsilon>0$,

$$
\pi_{c}=\frac{1}{4} \neq \frac{1}{4}-\frac{\varepsilon}{8}=\pi_{b} p_{b c}+\pi_{c} p_{c c}+\pi_{d} p_{d c}
$$

(d) $\pi=\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{2}{5}\right)$ is stationary for all $\varepsilon \geq 0$. To this end, it suffices to check that π is a left eigenvector associated to the eigenvalue 1 for the matrix

$$
P=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{2}-\varepsilon & \varepsilon & 0 \\
0 & \varepsilon & \frac{1}{3}-\varepsilon & \frac{2}{3} \\
0 & 0 & \frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

Solution 5.2

(a) Yes, it is possible. For example, consider the Markov chain with state space $\{a, b, c, d\}$ and transition probability given by

$$
p_{a b}=1, p_{b c}=1, p_{c d}=1, p_{d d}=\frac{2}{3}, \text { and } p_{d a}=\frac{1}{3} .
$$

It follows that

$$
\mathbf{E}_{a}\left[H_{b}\right]=1, \mathbf{E}_{a}\left[H_{c}\right]=2, \mathbf{E}_{a}\left[H_{d}\right]=3, \text { and } \mathbf{E}_{a}\left[H_{a}\right]=3+\left(\frac{1}{3}\right)^{-1}
$$

and so

$$
\sum_{x \in\{a, b, c, d\}} \frac{1}{\mathbf{E}_{a}\left[H_{x}\right]}=2 .
$$

(b) No, it is not possible. If P is transient or null recurrent, then for all $y \in S, \mathbf{E}_{y}\left[H_{y}\right]=+\infty$, and so the sum is equal to 0 . If P is positive recurrent, then by the theorem in Section 3.3, there exists a unique stationary distribution, given by

$$
\pi(y)=\frac{1}{\mathbf{E}_{y}\left[H_{y}\right]}
$$

for all $y \in S$, and so the sum is equal to 1 .
(c) Since S is finite, there exists a recurrent state by the proposition in Section 2.13. By irreducibility, P is recurrent, and so it is positive recurrent by the proposition in Section 2.12. By the theorem in Section 3.3, there exists a unique stationary distribution.
(d) First, we note that the transition probability $P=\left(p_{x y}\right)_{x, y \in S}$ is given by

$$
p_{x y}=\mathbf{P}_{x}\left[X_{1}=y\right]=\mathbb{P}\left[X_{1}=y \mid X_{0}=x\right]=\mathbb{P}\left[X_{1}=y\right]>0
$$

Hence, the Markov chain is irreducible. To see that it is positive recurrent, we compute

$$
\begin{aligned}
\mathbf{E}_{x}\left[H_{x}\right] & =\mathbb{E}\left[H_{x} \mid X_{0}=x\right]=\sum_{k=1}^{\infty} k \cdot \mathbb{P}\left[X_{0}=x, X_{1} \neq x, \ldots X_{k-1} \neq x, X_{k}=x \mid X_{0}=x\right] \\
& =\sum_{k=1}^{\infty} k \cdot \mathbb{P}\left[X_{0} \neq x\right]^{k-1} \cdot \mathbb{P}\left[X_{0}=x\right]=\frac{1}{\mathbb{P}\left[X_{0}=x\right]}<\infty
\end{aligned}
$$

Solution 5.3

First, if π is reversible, then it follows directly from Proposition 3.1 that it is stationary.
Second, we assume that π is stationary and aim to prove that it is reversible. In the case $p=q=1$, every distribution π is trivially reversible and stationary. In the case $p \neq 1$ or $q \neq 1$, we deduce from $\pi P=\pi$ that

$$
\pi_{1}(1-p)=\pi_{2}(1-q)
$$

Plugging in $\pi_{2}=1-\pi_{1}$, we get

$$
1-q=\pi_{1}(2-p-q) \quad \Longleftrightarrow \quad \pi_{1}=\frac{1-q}{2-p-q}
$$

Hence,

$$
\left(\pi_{1}, \pi_{2}\right)=\left(\frac{1-q}{2-p-q}, \frac{1-p}{2-p-q}\right)
$$

which is reversible since $\pi_{1} p_{12}=\pi_{2} p_{21}$.

Solution 5.4

(a) For simplicity of notation, we set $p_{0,1}:=p_{N, 1}$ and $p_{N+1, N}=p_{1, N}$. For every $i \in\{1, \ldots, N\}$,

$$
\pi_{i}=\frac{1}{N}=\alpha \frac{1}{N}+(1-\alpha) \frac{1}{N}=\pi_{i-1} p_{i-1, i}+\pi_{i+1} p_{i+1, i}
$$

and so the distribution π is stationary.
Clearly, the biased random walk on $\{1, \ldots, N\}$ is irreducible. By the theorem in Section 3.3, the stationary distribution is unique if it exists (i.e. if P is positive recurrent). Hence, π is the unique stationary distribution.
(b) Since any reversible distribution is stationary, it suffices to check if π (which is the the unique stationary distribution as shown in part (a)) is reversible. For $i \in\{1, \ldots, N\}$, we have

$$
\pi_{i} p_{i, i+1}=\frac{1}{N} \alpha=\frac{1}{N}(1-\alpha)=\pi_{i+1} p_{i+1, i}
$$

if and only if $\alpha=\frac{1}{2}$. Hence, π is reversible if and only if $\alpha=\frac{1}{2}$.

Solution 5.5

(a) Note that for every $x \in S$, we have

$$
\sum_{y \in S} \widetilde{p}_{x y}=\delta+(1-\delta) \cdot \sum_{y \in S} p_{x y}=1
$$

Since $\widetilde{p}_{x y} \geq 0$ for every $x, y \in S$, we conclude that \widetilde{P} is a transition probability.
(b) Let $x, y \in S$ be different states. Since P is irreducible, we know that there exists $x=$ $x_{0}, x_{1}, \ldots, x_{n}=y$ with $p_{x_{i} x_{i+1}}>0$ and such that all the x_{i} 's are different. This implies that

$$
\widetilde{p}_{x, y}^{(n)} \geq \widetilde{p}_{x_{0} x_{1}} \cdots \widetilde{p}_{x_{n-1} x_{n}}=(1-\delta)^{n} p_{x_{0} x_{1}} \cdots p_{x_{n-1} x_{n}}>0,
$$

i.e., \widetilde{P} is irreducible. Since $\widetilde{p}_{x x} \geq \delta>0$, we conclude that \widetilde{P} is aperiodic.
(c) Since P is irreducible and positive recurrent, there exists a unique stationary distribution π for P. We show that π is also a stationary distribution for \widetilde{P}, which implies that \widetilde{P} is positive recurrent. Indeed, for every $x \in S$,

$$
\sum_{y \in S} \pi(y) \widetilde{p}_{y x}=\delta \cdot \underbrace{\sum_{y \in S} \pi(y) \mathbb{1}_{x=y}}_{=\pi(x)}+(1-\delta) \cdot \underbrace{\sum_{y \in S} \pi(y) p_{y x}}_{=\pi(x)}=\pi(x),
$$

where we have used the stationarity of π for P.

Solution 5.6

(a) We check that the two properties in the definition of transition probability are satisfied. For every $x, y \in S$, the definition directly implies $\hat{p}_{x y} \geq 0$. For every $x \in S$ with $\pi(x)=0$,

$$
\sum_{y \in S} \hat{p}_{x y}=\sum_{y \in S} \mathbf{1}_{x=y}=1,
$$

and for every $x \in S$ with $\pi(x)>0$,

$$
\sum_{y \in S} \hat{p}_{x y}=\sum_{y \in S} \frac{\pi(y) p_{y x}}{\pi(x)}=\frac{\pi(x)}{\pi(x)}=1
$$

by stationarity of π.
(b) Let $f, g \in \mathrm{~L}^{\infty}(S)$.

$$
\begin{aligned}
\langle P f, g\rangle_{\pi} & =\sum_{x \in S}(P f)(x) g(x) \pi(x)=\sum_{x, y \in S} \pi(x) p_{x y} f(y) g(x) \\
& =\sum_{x, y \in S} \pi(y) \hat{p}_{y x} f(y) g(x)=\sum_{y \in S} f(y)(\hat{P} g)(y) \pi(y)=\langle f, \hat{P} g\rangle_{\pi}
\end{aligned}
$$

In the third equality, we have used that the definition of \hat{P} implies $\pi(x) p_{x y}=\pi(y) \hat{p}_{y x}$ for all $x, y \in S$. If $\pi(y)>0$, this is clear. If $\pi(y)=0$, we must have $\pi(x)=0$ or $p_{x y}=0$ by stationarity of π.
(c) If π is reversible, then $\pi(y) \hat{p}_{y x}=\pi(x) p_{x y}=\pi(y) p_{y x}$, and so the same calculation as in part (b) shows that $\langle P f, g\rangle_{\pi}=\langle f, P g\rangle_{\pi}$, i.e. P is self-adjoint.

Fix arbitrary $x, y \in S$ and set $f:=\delta_{x}$ and $g:=\delta_{y}$. If P is self-adjoint, then

$$
\pi(y) p_{y x}=\langle P f, g\rangle_{\pi}=\langle f, P g\rangle_{\pi}=\pi(x) p_{x y}
$$

and so p is reversible.

