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Solution 6.1

(a) A simple example is provided by taking S = {1, 2, 3, 4, 5} and the transition probability P
defined by

pij =
{

1 if j = i+ 1 mod 5,
0 otherwise.

Clearly, P is irreducible and the set

{n ≥ 1 : p(n)
11 > 0} = {5, 10, 15, . . .}

has greatest common divisor equal to 5.

(b) • Since p(3)
aa > 0 and p(5)

aa > 0, it follows that da = 1.
• Since a↔ b, da = 1 implies db = 1.
• Since p(2)

cc > 0 and p(3)
cc > 0, it follows that dc = 1.

• Noting that p(n)
dd > 0 if and only if n is even, it follows that dd = 2.

• Noting that p(n)
ee > 0 if and only if n is a multiple of 3, it follows that de = 3.

• Since p(n)
ff = 0 for all n ≥ 1, it follows that df = +∞.

(c) Let P denote the transition probability of the biased random walk X = (Xn)n≥0 on Z. Note
that the Markov chain X = (X2n)n≥0, which makes two steps of the biased random walk at
every step, has state space 2Z and transition probability P 2.
Claim: P 2 is aperiodic, irreducible. Moreover, P 2 is null recurrent or transient.
Before proving the claim, let us show how to conclude from there. By Theorem 3.15, it then
follows that limn→∞P0[X2n = 0] = 0. Clearly, P0[Xn = 0] = 0 for all n odd, and so it follows
that limn→∞P0[Xn = 0] = 0.

Proof of Claim: Let i, j ∈ Z with i ≥ j. Then p2|i−j|
2i,2j ≥ α2|i−j| and p2|i−j|

2j,2i ≥ (1 − α)2|i−j|,
thus P 2 is irreducible on 2Z. Moreover, p2

00 = 2α(1− α) > 0, and so the P 2 is aperiodic. By
Theorem 3.2, it suffices to show that there exists no stationary distribution π for P 2 in order
to conclude that P 2 is null recurrent or transient. Note that a stationary distribution π for
P 2 needs to satisfy for all i ∈ Z,

π2i = π2(i−1)α
2 + π2i2α(1− α) + π2(i+1)(1− α)2

⇐⇒
(

α

1− α

)2
· (π2i − π2(i−1)︸ ︷︷ ︸

=:∆i

) = π2(i+1) − π2i︸ ︷︷ ︸
=:∆i+1

.

We note that ∆1 = 0 implies ∆i = 0 for all i ∈ Z, and so (π2i)i∈Z is constant. Similarly,
α = 1/2 implies that (π2i)i∈Z is constant. But this contradicts the fact that π is a distribution.
Thus, we may assume that ∆1 > 0 and α 6= 1/2. Now, α > 1/2 implies limi→∞∆i =∞, and
α < 1/2 implies limi→−∞∆i =∞. Again, this contradicts the fact that π is a distribution.
In summary, we conclude that there exists no stationary distribution for P 2.
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Solution 6.2 We note that the three-state Markov chain X is irreducible and aperiodic. Moreover,
Propositions 2.16 and 2.17 imply that the Markov chain X is positive recurrent. Thus, by Theorem
3.2,

lim
n→∞

Pb[Xn = b] = πb,

where π denotes the unique stationary distribution. It remains to find π statisfying π = πP . We
compute a left eigenvector associated to the eigenvalue 1 of the transition probability P and obtain
(2/3, 2/3, 1). Normalizing yields

π = (2/7, 2/7, 3/7),
and so the limit is πb = 2/7.

Solution 6.3 The Markov chain (X2n)n≥0 with X0 = c has state space S′ = {a, c} and transition
probability P ′ given by

p′aa = 2
3 ·

1
3 + 1

3 ·
2
3 = 4

9 , p′ac = 5
9 , p′cc = 4

9 , and p′ca = 5
9 .

Clearly, P ′ is irreducible and aperiodic. By symmetry, the unique stationary distribution is given
by π = (1/2, 1/2). Thus, by Theorem 3.15,

lim
n→∞

Pc[X2n = a] = 1
2 .

Solution 6.4

(a) Recall that the space of all configurations is {0, 1}V . We will use the notation

ξ = (ξ(a), ξ(b), ξ(c), ξ(d))

throughout this exercise. There are seven admissible configurations given by

S = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (0, 1, 0, 1)}.

(b) Recall that at each step of the Markov chain, a vertex in v ∈ V is chosen uniformly at random,
and if both neighbors are not occupied, then ξ(v) is sampled using a fair coin. This yields
the following transition probabilities:

p(0,0,0,0),(0,0,0,0) = 1/2,
p(0,0,0,0),(1,0,0,0) = p(0,0,0,0),(0,1,0,0) = p(0,0,0,0),(0,0,1,0) = p(0,0,0,0),(0,0,0,1) = 1/8,
p(1,0,0,0),(1,0,0,0) = 1/2 + 1/2 · 1/2 = 3/4,
p(1,0,0,0),(0,0,0,0) = p(1,0,0,0),(1,0,1,0) = 1/8,
p(0,1,0,0),(0,1,0,0) = 1/2 + 1/2 · 1/2 = 3/4,
p(0,1,0,0),(0,0,0,0) = p(0,1,0,0),(0,1,0,1) = 1/8,
p(0,0,1,0),(0,0,1,0) = 1/2 + 1/2 · 1/2 = 3/4,
p(0,0,1,0),(0,0,0,0) = p(0,0,1,0),(1,0,1,0) = 1/8,
p(0,0,0,1),(0,0,0,1) = 1/2 + 1/2 · 1/2 = 3/4,
p(0,0,0,1),(0,0,0,0) = p(0,0,0,1),(0,1,0,1) = 1/8,
p(1,0,1,0),(1,0,1,0) = 1/2 + 1/2 · 1/2 = 3/4,
p(1,0,1,0),(1,0,0,0) = p(1,0,1,0),(0,0,1,0) = 1/8,
p(0,1,0,1),(0,1,0,1) = 1/2 + 1/2 · 1/2 = 3/4,
p(0,1,0,1),(0,1,0,0) = p(0,1,0,1),(0,0,0,1) = 1/8.
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Representing this transition probability as a directed graph yields that every state has an
arrow pointing to itself and there are arrows between two states whenever the two states
differ in one coordinate.

(c) It follows directly from (b) that there is a unique communication class, hence P is irreducible.
Moreover, since every state has an arrow pointing to itself, P is aperiodic.

Solution 6.5

(a) We note that for every admissible state ξ ∈ S,

pξ,ξ ≥ 1/2.

Indeed, if a vertex v ∈ V is picked that has an occupied neighbor, then the state remains
unchanged, and if a vertex v ∈ V is picked that has no occupied neighbor, then the state
remains unchanged with probability 1/2.
This implies directly that ξ has period 1 for every ξ ∈ S.

(b) Let us denote by 0 ∈ S the configuration with no particles, and let ξ ∈ S be any admissible
configuration. Define the set of occupied coordinates as Aξ := {i ∈ V : ξ(i) = 1}. We note
that

p
|Aξ|
0,ξ = p

|Aξ|
ξ,0 =

(
|Aξ|
64 ·

1
2

)
·
(
|Aξ| − 1

64 · 1
2

)
· . . . ·

(
1
64 ·

1
2

)
> 0.

Indeed, in order to transition from 0 to ξ (resp. from ξ to 0) in exactly |Aξ| steps, we have to
pick in each step a vertex which is currenctly not occupied but which is occupied in ξ and
then sample the new value to be 1.
Hence, 0←→ ξ for every ξ ∈ S, and so P is irreducible.

(c) There are different ways to simulate Z, a uniform random variable in Sk. We will describe
three alternatives:

1. We could use the hardcore model as described in Section 3.9. Starting from any fixed
admissible configuration, we could first let the Markov chain run up to some large time,
and then stop it at the next time it reaches a state in Sk. This yields a random variable
Z that is (close to) uniform on Sk. Indeed, we have for every ξ ∈ Sk,

lim
n→∞

P[Xn = ξ|Xn ∈ Sk] = lim
n→∞

P[Xn = ξ]
P[Xn ∈ Sk] = 1/|S|

|Sk|/|S|
= 1
|Sk|

.

2. Inspired by the hardcore model, we could define a new Markov chain on Sk with
stationary distribution π, the uniform distribution on Sk, as follows: We start from a
fixed admissible configuration X0 = η ∈ Sk. For n ≥ 0, we define Xn+1 from Xn as
follows:

• Pick one of the k particles uniformly at random, i.e. a vertex v ∈ V with ξ(v) = 1. In
addition, Pick a vertex u ∈ V with no particle, i.e. ξ(u) = 0, uniformly at random.

• If u has an occupied neighbor w 6= v in Xn, we do nothing and set Xn+1 = Xn.
• If none of the neighbors w 6= v of u is occupied in Xn, then we set Xn+1(u) = 1,
Xn+1(v) = 0, and Xn+1(w) = Xn(w) for all w /∈ {u, v}, i.e. we move the particle
from u to v.

If k is not too large, then the Markov chain is irreducible and aperiodic. Note that if
k = 32, i.e. half of the vertices are occupied, then the only two admissible configurations
are the two chessboard configurations, and in this case, the Markov chain will always
remain in the initial state. This explains, why we need k to be not too large.
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As in the proof of Proposition 3.17, one can verify that the transition probability is
symmetric, hence the uniform distribution on Sk is reversible, thus stationary. This
implies the desired result.

3. Inspired by the hardcore model, we could define a new Markov chain on Sk with
stationary distribution π, the uniform distribution on Sk, as follows: We start from a
fixed admissible configuration X0 = η ∈ Sk. For n ≥ 0, we define Xn+1 from Xn as
follows:

• Pick a pair of vertices (u, v) ∈ V × V uniformly at random.
• If the configuration with Xn+1(v) = Xn(u), Xn+1(u) = Xn(v), and Xn+1(w) =
Xn(w) for all w /∈ {u, v} is admissible, we make this change, i.e. we interchange u
and v. Otherwise, we set Xn+1 = Xn, i.e. do nothing.

If k is not too large, then the Markov chain is irreducible and aperiodic. Again, note
that if k = 32, i.e. half of the vertices are occupied, then the only two admissible
configurations are the two chessboard configurations, and in this case, the Markov chain
will always remain in the initial state. This explains, why we need k to be not too large.
As in the proof of Proposition 3.17, one can verify that the transition probability is
symmetric, hence the uniform distribution on Sk is reversible, thus stationary. This
implies the desired result.
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