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Solution 7.1

(a) Yes, by the law of large numbers for renewal processes,

. Nt . Nt 1
lim —-=1lm — - - =0 as
t—oo t—o0 t t
~— ~—
%iG[O,oo) —0
(¢) Yes, by the law of large numbers for renewal processes,
N,
lim —% = lim =t Vt =400 as.
t—o0 A/t t—o0 t ~—~—
—+o0
—)%E(0,00)

(d) Since g = oo, limg_s o % = 0 a.s., and thus we cannot apply the law of large numbers to

determine the limit of N;/ Vt. In fact, the behaviour of N, / \/t for large t depends on the
arrival distribution F'.

Solution 7.2

(a) Since T} =1 a.s., we also obtain Sy =T} + ...+ T = k a.s., and so for every ¢ > 0,

Nt - lekgt - Zlkgt - \_tJ
k=1 k=1

In particular, E[N;] = [t] for every ¢t > 0. This function starts at 0, is piecewise constant and
makes jumps of height 1 at every integer value of ¢.

(b) As in the proof of Proposition 5.3, we have for every ¢ > 0,

m(t) = E[N;] = ipm AT <] = iF*"’(t).
k=1 k=1

We now focus on computing F** for k > 1. Since T} ~ U(0, 1), its cumulative distribution
function F' is given by F'(t) =t - Llo<i<1 + 1i>1. We note that F' has density f(t) = lo<i<1-
This allows us to compute for k = 2,

t t min{1,t}
(F * F)(t) = / F(t — S)dF(S) = / F(t — S)logsglds = / (t — S) . 10§t*8S1 + 1t78>1d8
0 0 0

min{1,t}
= / (t—5)  Li—i<s<t + Lsci—1ds.
0
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For ¢ € [0, 1], we obtain

t
(F+ F)(1) :/ (t — s)ds = [st — 2/2]L = 2/2,
0
and in the same way, by iteration, also
FR(t) =tk /k!.

Summing up, we conclude that for ¢ € [0, 1],

o0

m(t) = Ztk/k! =e' — 1.

k=1

This allows us to draw the function for ¢ € [0,1]. Computations for larger values of ¢ are
possible but require more care. We also note that the renewal equation provides an alternative
way to compute m(t).

(c) Using Proposition 4.1, we have for every ¢t > 0, N; ~ Poisson(2t), and so m(t) = 2¢t. This
function starts at 0 and is linear with slope 2.

(d) Using Proposition 4.2 with a = 1 and 8 = 1/2, we have for every ¢t > 0,

1t]
Ny~ Xo+ > (14 X5),

i=1

where the X;’s are i.i.d. geometric variables with parameter 1/2. Since X; has expectation
18 — 1, we have m(t) = 1+ 2[¢|. This function starts at 1, is piecewise constant and makes
jumps of height 2 at every integer value of t.

Solution 7.3

Let @ denote the distribution function of the standard normal distribution, and let [z] be the
smallest integer greater than or equal to x for x € R. Let S, := Z?zl T;, then using the central
limit theorem we have

Jim P[(Sy, —np)/oy/n < z] = &(x)

uniformly in x € R. Note that ® is continuous and so it does not matter whether we consider the
event with strict inequality < or weak inequality < on the left side.

For simplicity of notation, we define
_ Nt/

ot/

Now, for given t > 0 and x € R, since IV; is integer-valued, we have

P[Z; < 2] = P {Nt < [a(o/t/13) + t/uﬂ .

Ztl

Setting h(t) := [z(o\/t/p?) +t/u], from
{Ne <h(t)} = {Sh) >t}
we obtain that

P70 < 2] = B[She > 1] = P [(Suy — 1h(0))/o/BO) > (¢ = uh(0)) /o /R{0)]
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Tt suffices to show h(t) — oo and z(t) := (t — ph(t))/o\/h(t) — —x as t — oo, since in that case
the uniform convergence in the central limit theorem will imply

P [(Su) — #h()/o /(D) > 2(0)] = 1 - B(~z) = B(a),

which means that P[Z; < z] — ®(z) and therefore Z; converges to the standard normal distribution
in law as t — oo. Indeed, if a sequence of functions (f,)n,>1 converges uniformly to a continuous
function f, and a sequence of real numbers (y,,),>1 converges to some y € R, then one can easily
prove that lim, o0 fr(yn) = f(y). Now for any sequence (¢,,),>1 tending to infinity, we can define
fn as the distribution function of (Sy(,,) — ph(t,))/o\/h(tn) and y, := 2(t,). Since f, converges

uniformly to the function f(x):=1— ®(z) and y,, converges to y := —z, using the above claim we
can deduce the desired result.
The fact that lim;_,. h(t) = oo is easy to see. To show that lim; . 2(t) = —x, we first note that

by definition h(t) = z(o+/t/u3) + t/u + €(t), where |e(t)| < 1, and hence

_ t— pla(o/t/p?) +t/u+ e(t)]
a+/h(t)
_ —ha(o /i)
ot/
— —x as t — 0.

2(t)

Solution 7.4

(a) First, we note that the set A:= {a’ > 0:P[T} € a’Z] = 1} is non-empty and bounded since
T is lattice and takes values in R. Second,

b:=min{b >0:P[Ty =] >0}

is well-defined. Indeed, the set B := {b’ > 0 : P[T} = b'] > 0} is non-empty since P[T} > 0] > 0
and T7 is lattice. Furthermore, inf B is attained as a minimum because for any o’ € A,

inf B =inf{b’ € a'Z~ : P[T1 =¥'] > 0},

and a’Z~o C R is a closed set that is bounded from below. We also note that b is a multiple
of a’ for any a’ € A. Finally, we set

E* :=min{k > 1:b/k < sup A}.

If sup A is not attained, then we can choose a € A satisfying b/k*™ < a < sup A. But this
contradicts our previous observation that a divides b. Hence, sup A is attained and a is
well-defined.

(b) Since (IVi)¢>0 is a renewal process with jump times in aZ, it directly follows that N, := Ny
defines a renewal process with integer-valued jump times.

(c) We first note that for all ¢ € S, P[Ty = ¢] > 0. Thus, p = (p;j)i,jes is well-defined and by
definition, p;; > 0 for all ¢,j € S. Furthermore, for ¢ > 1,

Zpij =pii-1=1,

JjeSs

ZPOJ‘ = Z]P’[T1 =Jjl=1,

Jjes Jj21

and for i = 0,
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since P[Th = 0] = 0. Hence, P is a transition probability.
Case 1: S=1{0,1,...,N -1}

The chain is irreducible since pg y—1 = P[T1 = N] > 0 and for every j € {0,1,...,N — 1},
(N—1—j)

we have py_; ;= 1. Furthermore, the hitting time satisfies Hy < N and so the chain is
recurrent.
Case 2: S=N

We first note that Po[Hy = +oo] = P[T; = +o0] = 0, and so the state 0 is recurrent.
Furthermore, for every ¢ > 1, there exists some (minimal) j > 4 such that P[T3 = j] > 0, and

so we have
j—i—1

P =pojo1 H Pj—kj—k—1=P[T1 =j]>0.
k=1
Hence, 0 — 4, and in fact, 0 <+ ¢ by the recurrence of 0. This concludes that the chain is
irreducible and recurrent.

Before we show that the chain is aperiodic, we note that for any k € N (satisfying k¥ < N if
n < 00),

j—1

Py[Hy = j] = po,j—1 - (H pjk,jkl) =P[T = j].

k=1

Hence, the law of Hy under Py is the same as the law of 77 under P. Finally, let d be the

period of the state 0 (and therefore of the chain P). By definition, we have that pég) =0 for
all n ¢ dZ. Hence, Hy € dZ Py-a.s. and equivalently, T7 € dZ P-a.s.. This implies that d = 1
since d > 2 would contradict ¢ = 1.

For any ¢ > 0,

[t] Lt
m(t) =B[N =E |3 1 om<e| =Eo | > Ix.=0| = _ply
n=1 n=1

i>1
By the theorem on the density of visit times for Markov chains (Sections 3.7 — 3.8),
Lt)
1 (n) 1
lim — Poo. = .
t=oo |t ,; % Eo[Ho]

Hence,

g O @) 1

1
t—oo T t—00 LtJ E[Tl] ;
For s < ¢, the computation from part (d) shows that

[t]
m(t) —m(s)= > ph

n=|s|+1

By the results on the convergence of aperiodic, irreducible Markov chains (Section 2.8), we
have

) — Py[X, =0 —>#:l as n — oo.
Poo 0[ ] EO [HO] L
Since for k € N the interval (¢,t 4 k] contains exactly k integers, we conclude that
li t+k t) = i
Jim -+ £) = m(t) = -
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