Applied Stochastic Processes

Solution sheet 7

Solution 7.1

(a) Yes, by the law of large numbers for renewal processes,

$$
\lim _{t \rightarrow \infty} \frac{N_{t}}{t}=\frac{1}{\mu} \quad \text { a.s. }
$$

(b) Yes, by the law of large numbers for renewal processes,

$$
\lim _{t \rightarrow \infty} \frac{N_{t}}{t^{2}}=\lim _{t \rightarrow \infty} \underbrace{\frac{N_{t}}{t}}_{\rightarrow \frac{1}{\mu} \in[0, \infty)} \cdot \underbrace{\frac{1}{t}}_{\rightarrow 0}=0 \quad \text { a.s. }
$$

(c) Yes, by the law of large numbers for renewal processes,

$$
\lim _{t \rightarrow \infty} \frac{N_{t}}{\sqrt{t}}=\lim _{t \rightarrow \infty} \underbrace{\frac{N_{t}}{t}}_{\rightarrow \frac{1}{\mu} \in(0, \infty)} \cdot \underbrace{\sqrt{t}}_{\rightarrow+\infty}=+\infty \quad \text { a.s. }
$$

(d) Since $\mu=\infty, \lim _{t \rightarrow \infty} \frac{N_{t}}{t}=0$ a.s., and thus we cannot apply the law of large numbers to determine the limit of N_{t} / \sqrt{t}. In fact, the behaviour of N_{t} / \sqrt{t} for large t depends on the arrival distribution F.

Solution 7.2

(a) Since $T_{1}=1$ a.s., we also obtain $S_{k}=T_{1}+\ldots+T_{k}=k$ a.s., and so for every $t \geq 0$,

$$
N_{t}=\sum_{k=1}^{\infty} \mathbf{1}_{S_{k} \leq t}=\sum_{k=1}^{\infty} \mathbf{1}_{k \leq t}=\lfloor t\rfloor
$$

In particular, $\mathbb{E}\left[N_{t}\right]=\lfloor t\rfloor$ for every $t \geq 0$. This function starts at 0 , is piecewise constant and makes jumps of height 1 at every integer value of t.
(b) As in the proof of Proposition 5.3, we have for every $t \geq 0$,

$$
m(t)=\mathbb{E}\left[N_{t}\right]=\sum_{k=1}^{\infty} \mathbb{P}\left[T_{1}+\ldots+T_{k} \leq t\right]=\sum_{k=1}^{\infty} F^{* k}(t)
$$

We now focus on computing $F^{* k}$ for $k \geq 1$. Since $T_{1} \sim \mathcal{U}(0,1)$, its cumulative distribution function F is given by $F(t)=t \cdot \mathbf{1}_{0 \leq t \leq 1}+\mathbf{1}_{t>1}$. We note that F has density $f(t)=\mathbf{1}_{0 \leq t \leq 1}$. This allows us to compute for $k=2$,

$$
\begin{aligned}
(F * F)(t) & =\int_{0}^{t} F(t-s) d F(s)=\int_{0}^{t} F(t-s) \mathbf{1}_{0 \leq s \leq 1} d s=\int_{0}^{\min \{1, t\}}(t-s) \cdot \mathbf{1}_{0 \leq t-s \leq 1}+\mathbf{1}_{t-s>1} d s \\
& =\int_{0}^{\min \{1, t\}}(t-s) \cdot \mathbf{1}_{t-1 \leq s \leq t}+\mathbf{1}_{s<t-1} d s
\end{aligned}
$$

For $t \in[0,1]$, we obtain

$$
(F * F)(t)=\int_{0}^{t}(t-s) d s=\left[s t-s^{2} / 2\right]_{0}^{t}=t^{2} / 2
$$

and in the same way, by iteration, also

$$
F^{* k}(t)=t^{k} / k!
$$

Summing up, we conclude that for $t \in[0,1]$,

$$
m(t)=\sum_{k=1}^{\infty} t^{k} / k!=e^{t}-1
$$

This allows us to draw the function for $t \in[0,1]$. Computations for larger values of t are possible but require more care. We also note that the renewal equation provides an alternative way to compute $m(t)$.
(c) Using Proposition 4.1, we have for every $t \geq 0, N_{t} \sim \operatorname{Poisson}(2 t)$, and so $m(t)=2 t$. This function starts at 0 and is linear with slope 2 .
(d) Using Proposition 4.2 with $\alpha=1$ and $\beta=1 / 2$, we have for every $t \geq 0$,

$$
N_{t} \sim X_{0}+\sum_{i=1}^{\lfloor t\rfloor}\left(1+X_{i}\right)
$$

where the X_{i} 's are i.i.d. geometric variables with parameter $1 / 2$. Since X_{i} has expectation $\frac{1-\beta}{\beta}=1$, we have $m(t)=1+2\lfloor t\rfloor$. This function starts at 1 , is piecewise constant and makes jumps of height 2 at every integer value of t.

Solution 7.3

Let Φ denote the distribution function of the standard normal distribution, and let $\lceil x\rceil$ be the smallest integer greater than or equal to x for $x \in \mathbb{R}$. Let $S_{n}:=\sum_{i=1}^{n} T_{i}$, then using the central limit theorem we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\left(S_{n}-n \mu\right) / \sigma \sqrt{n}<x\right]=\Phi(x)
$$

uniformly in $x \in \mathbb{R}$. Note that Φ is continuous and so it does not matter whether we consider the event with strict inequality $<$ or weak inequality \leq on the left side.
For simplicity of notation, we define

$$
Z_{t}:=\frac{N_{t}-t / \mu}{\sigma \sqrt{t / \mu^{3}}}
$$

Now, for given $t>0$ and $x \in \mathbb{R}$, since N_{t} is integer-valued, we have

$$
\mathbb{P}\left[Z_{t}<x\right]=\mathbb{P}\left[N_{t}<\left\lceil x\left(\sigma \sqrt{t / \mu^{3}}\right)+t / \mu\right\rceil\right]
$$

Setting $h(t):=\left\lceil x\left(\sigma \sqrt{t / \mu^{3}}\right)+t / \mu\right\rceil$, from

$$
\left\{N_{t}<h(t)\right\}=\left\{S_{h(t)}>t\right\}
$$

we obtain that

$$
\mathbb{P}\left[Z_{t}<x\right]=\mathbb{P}\left[S_{h(t)}>t\right]=\mathbb{P}\left[\left(S_{h(t)}-\mu h(t)\right) / \sigma \sqrt{h(t)}>(t-\mu h(t)) / \sigma \sqrt{h(t)}\right]
$$

It suffices to show $h(t) \rightarrow \infty$ and $z(t):=(t-\mu h(t)) / \sigma \sqrt{h(t)} \rightarrow-x$ as $t \rightarrow \infty$, since in that case the uniform convergence in the central limit theorem will imply

$$
\mathbb{P}\left[\left(S_{h(t)}-\mu h(t)\right) / \sigma \sqrt{h(t)}>z(t)\right] \rightarrow 1-\Phi(-x)=\Phi(x)
$$

which means that $\mathbb{P}\left[Z_{t}<x\right] \rightarrow \Phi(x)$ and therefore Z_{t} converges to the standard normal distribution in law as $t \rightarrow \infty$. Indeed, if a sequence of functions $\left(f_{n}\right)_{n \geq 1}$ converges uniformly to a continuous function f, and a sequence of real numbers $\left(y_{n}\right)_{n \geq 1}$ converges to some $y \in \mathbb{R}$, then one can easily prove that $\lim _{n \rightarrow \infty} f_{n}\left(y_{n}\right)=f(y)$. Now for any sequence $\left(t_{n}\right)_{n \geq 1}$ tending to infinity, we can define f_{n} as the distribution function of $\left(S_{h\left(t_{n}\right)}-\mu h\left(t_{n}\right)\right) / \sigma \sqrt{h\left(t_{n}\right)}$ and $y_{n}:=z\left(t_{n}\right)$. Since f_{n} converges uniformly to the function $f(x):=1-\Phi(x)$ and y_{n} converges to $y:=-x$, using the above claim we can deduce the desired result.
The fact that $\lim _{t \rightarrow \infty} h(t)=\infty$ is easy to see. To show that $\lim _{t \rightarrow \infty} z(t)=-x$, we first note that by definition $h(t)=x\left(\sigma \sqrt{t / \mu^{3}}\right)+t / \mu+\epsilon(t)$, where $|\epsilon(t)|<1$, and hence

$$
\begin{aligned}
z(t) & =\frac{t-\mu\left[x\left(\sigma \sqrt{t / \mu^{3}}\right)+t / \mu+\epsilon(t)\right]}{\sigma \sqrt{h(t)}} \\
& \sim \frac{-\mu x\left(\sigma \sqrt{t / \mu^{3}}\right)}{\sigma \sqrt{t / \mu}} \\
& \rightarrow-x \text { as } t \rightarrow \infty .
\end{aligned}
$$

Solution 7.4

(a) First, we note that the set $A:=\left\{a^{\prime}>0: \mathbb{P}\left[T_{1} \in a^{\prime} \mathbb{Z}\right]=1\right\}$ is non-empty and bounded since T_{1} is lattice and takes values in \mathbb{R}. Second,

$$
b:=\min \left\{b^{\prime}>0: \mathbb{P}\left[T_{1}=b^{\prime}\right]>0\right\}
$$

is well-defined. Indeed, the set $B:=\left\{b^{\prime}>0: \mathbb{P}\left[T_{1}=b^{\prime}\right]>0\right\}$ is non-empty since $\mathbb{P}\left[T_{1}>0\right]>0$ and T_{1} is lattice. Furthermore, $\inf B$ is attained as a minimum because for any $a^{\prime} \in A$,

$$
\inf B=\inf \left\{b^{\prime} \in a^{\prime} \mathbb{Z}_{>0}: \mathbb{P}\left[T_{1}=b^{\prime}\right]>0\right\}
$$

and $a^{\prime} \mathbb{Z}_{>0} \subset \mathbb{R}$ is a closed set that is bounded from below. We also note that b is a multiple of a^{\prime} for any $a^{\prime} \in A$. Finally, we set

$$
k^{*}:=\min \{k \geq 1: b / k<\sup A\}
$$

If $\sup A$ is not attained, then we can choose $\tilde{a} \in A$ satisfying $b / k^{*}<\tilde{a}<\sup A$. But this contradicts our previous observation that \tilde{a} divides b. Hence, $\sup A$ is attained and a is well-defined.
(b) Since $\left(N_{t}\right)_{t \geq 0}$ is a renewal process with jump times in $a \mathbb{Z}$, it directly follows that $\tilde{N}_{t}:=N_{a t}$ defines a renewal process with integer-valued jump times.
(c) We first note that for all $i \in S, \mathbb{P}\left[T_{1}=i\right] \geq 0$. Thus, $p=\left(p_{i j}\right)_{i, j \in S}$ is well-defined and by definition, $p_{i j} \geq 0$ for all $i, j \in S$. Furthermore, for $i \geq 1$,

$$
\sum_{j \in S} p_{i j}=p_{i, i-1}=1
$$

and for $i=0$,

$$
\sum_{j \in S} p_{0 j}=\sum_{j \geq 1} \mathbb{P}\left[T_{1}=j\right]=1
$$

since $\mathbb{P}\left[T_{1}=0\right]=0$. Hence, P is a transition probability.
Case 1: $S=\{0,1, \ldots, N-1\}$
The chain is irreducible since $p_{0, N-1}=\mathbb{P}\left[T_{1}=N\right]>0$ and for every $j \in\{0,1, \ldots, N-1\}$, we have $p_{N-1, j}^{(N-1-j)}=1$. Furthermore, the hitting time satisfies $H_{0} \leq N$ and so the chain is recurrent.
Case 2: $S=\mathbb{N}$
We first note that $\mathbf{P}_{0}\left[H_{0}=+\infty\right]=\mathbb{P}\left[T_{1}=+\infty\right]=0$, and so the state 0 is recurrent. Furthermore, for every $i \geq 1$, there exists some (minimal) $j \geq i$ such that $\mathbb{P}\left[T_{1}=j\right]>0$, and so we have

$$
p_{0 i}^{(j-i)}=p_{0, j-1} \cdot \prod_{k=1}^{j-i-1} p_{j-k, j-k-1}=\mathbb{P}\left[T_{1}=j\right]>0
$$

Hence, $0 \rightarrow i$, and in fact, $0 \leftrightarrow i$ by the recurrence of 0 . This concludes that the chain is irreducible and recurrent.
Before we show that the chain is aperiodic, we note that for any $k \in \mathbb{N}$ (satisfying $k \leq N$ if $n<\infty)$,

$$
\mathbf{P}_{0}\left[H_{0}=j\right]=p_{0, j-1} \cdot\left(\prod_{k=1}^{j-1} p_{j-k, j-k-1}\right)=\mathbb{P}\left[T_{1}=j\right]
$$

Hence, the law of H_{0} under \mathbf{P}_{0} is the same as the law of T_{1} under \mathbb{P}. Finally, let d be the period of the state 0 (and therefore of the chain P). By definition, we have that $p_{00}^{(n)}=0$ for all $n \notin d \mathbb{Z}$. Hence, $H_{0} \in d \mathbb{Z} \mathbf{P}_{0}$-a.s. and equivalently, $T_{1} \in d \mathbb{Z} \mathbb{P}$-a.s.. This implies that $d=1$ since $d \geq 2$ would contradict $a=1$.
(d) For any $t \geq 0$,

$$
m(t)=\mathbb{E}\left[N_{t}\right]=\mathbb{E}\left[\sum_{i \geq 1} \mathbf{1}_{T_{1}+\cdots+T_{i} \leq t}\right]=\mathbf{E}_{0}\left[\sum_{n=1}^{\lfloor t\rfloor} \mathbf{1}_{X_{n}=0}\right]=\sum_{n=1}^{\lfloor t\rfloor} p_{00}^{(n)}
$$

By the theorem on the density of visit times for Markov chains (Sections 3.7-3.8),

$$
\lim _{t \rightarrow \infty} \frac{1}{\lfloor t\rfloor} \sum_{n=1}^{\lfloor t\rfloor} p_{00}^{(n)}=\frac{1}{\mathbf{E}_{0}\left[H_{0}\right]}
$$

Hence,

$$
\lim _{t \rightarrow \infty} \frac{m(t)}{t}=\lim _{t \rightarrow \infty} \frac{m(t)}{\lfloor t\rfloor}=\frac{1}{\mathbb{E}\left[T_{1}\right]}=\frac{1}{\mu}
$$

(e) For $s \leq t$, the computation from part (d) shows that

$$
m(t)-m(s)=\sum_{n=\lfloor s\rfloor+1}^{\lfloor t\rfloor} p_{00}^{(n)}
$$

By the results on the convergence of aperiodic, irreducible Markov chains (Section 2.8), we have

$$
p_{00}^{(n)}=\mathbf{P}_{0}\left[X_{n}=0\right] \longrightarrow \frac{1}{\mathbf{E}_{0}\left[H_{0}\right]}=\frac{1}{\mu} \quad \text { as } n \rightarrow \infty
$$

Since for $k \in \mathbb{N}$ the interval $(t, t+k]$ contains exactly k integers, we conclude that

$$
\lim _{t \rightarrow \infty} m(t+k)-m(t)=\frac{k}{\mu}
$$

