Applied Stochastic Processes

Solution sheet 8

Solution 8.1

(a) Since $T_{1} \sim \operatorname{Exp}(\lambda)$, we have for all $t \geq 0, N_{t} \sim \operatorname{Pois}(\lambda t)$ by Proposition 4.1. Hence, $m(t)=\mathbb{E}\left[N_{t}\right]=\lambda t=t / \mu$. So yes, this is true.
(b) No, it is not true. It suffices to show that for $t \leq 1$,

$$
m(t)=\mathbb{E}\left[N_{t}\right]=\sum_{k \geq 1} \mathbb{P}\left[N_{t} \geq k\right]=\sum_{k \geq 1} \underbrace{\mathbb{P}\left[T_{1}+\ldots+T_{k} \leq t\right]}_{=t^{k} / k!}=e^{t}-1 \neq 2 t=t / \mu .
$$

Here, we have used that $\mathbb{P}\left[T_{1}+\ldots+T_{k} \leq t\right]=t^{k} / k!$ for $t \leq 1$, which can easily be proven by induction. Indeed, $\mathbb{P}\left[T_{1} \leq t\right]=t$ and then

$$
\begin{aligned}
\mathbb{P}\left[T_{1}+\ldots+T_{k} \leq t\right] & =\int_{0}^{t} \mathbb{P}\left[T_{1}+\ldots+T_{k-1} \leq t-s\right] d s \\
& =\int_{0}^{t}(t-s)^{k-1} /(k-1)!d s=t^{k} / k!
\end{aligned}
$$

(c) Yes, this follows from the elementary renewal theorem.
(d) If the arrival distribution is non-lattice, then this follows from Blackwell's renewal theorem. If the arrival distribution is lattice, the statement is not true in general (see Exercise 7.4 (e) for a correct statement in this case).

Solution 8.2

For clarity of notation, we denote by \widetilde{G}_{i} the Lebesgue-Stieltjes measure defined by the function $G_{i}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$(extended to a right-continuous, non-decreasing function on \mathbb{R} by setting $G_{i}(t)=0$ for $t<0)$. In particular, $\widetilde{G}_{i}(\{0\})=G_{i}(0)$. For $0 \leq s \leq t$, we write $\int_{s}^{t} h(r) d \widetilde{G}_{i}(r)$ for the integral over $[s, t]$ and $\int_{s^{+}}^{t} h(r) d \widetilde{G}_{i}(r)$ for the integral over $(s, t]$.
(a) For $t \geq 0$,

$$
\begin{aligned}
\lim _{t^{\prime} \searrow t} G_{1} * G_{2}\left(t^{\prime}\right) & =\lim _{t^{\prime} \searrow t} \int_{0}^{t} G_{1}\left(t^{\prime}-s\right) d \widetilde{G}_{2}(s)+\underbrace{\lim _{t^{\prime} \searrow t} \int_{t^{+}}^{t^{\prime}} G_{1}\left(t^{\prime}-s\right) d \widetilde{G}_{2}(s)}_{=0} \\
& =\int_{0}^{t} \underbrace{\lim _{t^{\prime}>t} G_{1}\left(t^{\prime}-s\right)}_{=G_{1}(t-s)} d \widetilde{G}_{2}(s)=G_{1} * G_{2}(t),
\end{aligned}
$$

where we have used the monotonicity and right-continuity of G_{1}. This establishes the right-continuity of $G_{1} * G_{2}$. To obtain monotonicity, we note that for $t^{\prime} \geq t \geq 0$,

$$
G_{1} * G_{2}\left(t^{\prime}\right)-G_{1} * G_{2}(t)=\int_{t^{+}}^{t^{\prime}} \underbrace{G_{1}\left(t^{\prime}-s\right)}_{\geq 0} d \widetilde{G}_{2}(s)+\int_{0}^{t} \underbrace{\left(G_{1}\left(t^{\prime}-s\right)-G_{1}(t-s)\right)}_{\geq 0} d \widetilde{G}_{2}(s) \geq 0
$$

Finally, for $t \geq 0$,

$$
\begin{aligned}
G_{1} * G_{2}(t) & =\int_{0}^{t} G_{1}(t-s) d \widetilde{G}_{2}(s)=\int_{0}^{t} \int_{0}^{t-s} d \widetilde{G}_{1}(r) d \widetilde{G}_{2}(s) \\
& =\int_{\left\{(r, s) \in[0, t]^{2}: r+s \leq t\right\}} d\left(\widetilde{G}_{1} \otimes \widetilde{G}_{2}\right)(r, s) \\
& =\int_{0}^{t} \int_{0}^{t-r} d \widetilde{G}_{2}(s) d \widetilde{G}_{1}(r)=G_{2} * G_{1}(t)
\end{aligned}
$$

where we have used Tonelli's theorem and we have written $\widetilde{G}_{1} \otimes \widetilde{G}_{2}$ for the product measure.
(b) First, by part (a), $G_{1} * G_{2}$ is a right-continuous, non-decreasing function from \mathbb{R}^{+}to \mathbb{R}^{+}, and so the associated Lebesgue-Stieltjes measure $\widetilde{G_{1} * G_{2}}$ is well-defined. Second, we define the measurable map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y):=x+y$ and claim that $\widetilde{G_{1} * G_{2}}=f \#\left(\widetilde{G}_{1} \otimes \widetilde{G}_{2}\right)$, where $f \#\left(\widetilde{G}_{1} \otimes \widetilde{G}_{2}\right)$ denotes the push-forward of the product measure of \widetilde{G}_{1} and \widetilde{G}_{2}. Indeed, for $t \geq 0$ we have as in part (a)

$$
\widetilde{G_{1} * G_{2}}([0, t])=G_{1} * G_{2}(t)=\int_{\{(r, s): 0 \leq r+s \leq t\}} d\left(\widetilde{G}_{1} \otimes \widetilde{G}_{2}\right)(r, s)
$$

and so the measure agree on sets of the form $[0, t]$. This extends to sets of the form $(s, t]$ by taking differences and to $\mathcal{B}(\mathbb{R})$ by a Dynkin argument. Finally, for $h: \mathbb{R}^{+} \rightarrow \mathbb{R}$ and $t \geq 0$,

$$
\begin{aligned}
\left(h * G_{1}\right) * G_{2}(t) & =\int_{0}^{t}\left(h * G_{1}\right)(t-s) d G_{2}(s)=\int_{0}^{t} \int_{0}^{t-s} h(t-s-r) d \widetilde{G}_{1}(r) d \widetilde{G}_{2}(s) \\
& =\int_{\{(r, s): 0 \leq r+s \leq t\}} h(t-(r+s)) d\left(\widetilde{G}_{1} \otimes \widetilde{G}_{2}\right)(r, s) \\
& =\int_{0}^{t} h(t-u) d\left(\widetilde{G_{1} * G_{2}}\right)(u)=h *\left(G_{1} * G_{2}\right)(t)
\end{aligned}
$$

where we have used the change-of-variables formula and the equality of the measures $\widetilde{G_{1} * G_{2}}$ and $f \#\left(\widetilde{G}_{1} \otimes \widetilde{G}_{2}\right)$.

Solution 8.3 Fix $x, t \geq 0$. We can separate $a_{x}(t)$ into two parts, one for the probability if there has already been a renewal before time t, and one if that hasn't occurred:

$$
\begin{equation*}
a_{x}(t)=\mathbb{P}\left[T_{1}>t, A_{t} \leq x\right]+\mathbb{P}\left[T_{1} \leq t, A_{t} \leq x\right] \tag{1}
\end{equation*}
$$

Now we analyze each term separately. The first term can be directly expressed as

$$
\begin{equation*}
\mathbb{P}\left[T_{1}>t, t \leq x\right]=\mathbf{1}_{t \leq x}(1-F(t)) \tag{2}
\end{equation*}
$$

For the second term, we exploit the renewal structure of the process. Observe that A_{t} is measurable with respect to $\left(T_{1}, T_{2}, \ldots\right)$: by definition, we have $A_{t}=\psi_{t}\left(T_{1}, T_{2}, \ldots\right)$, where

$$
\begin{equation*}
\psi_{t}\left(t_{1}, t_{2}, \ldots\right)=\sum_{n \geq 0} \mathbf{1}_{t_{1}+\cdots+t_{n} \leq t, t_{1}+\cdots+t_{n+1}>t}\left(t-\left(t_{1}+\cdots+t_{n}\right)\right) \tag{3}
\end{equation*}
$$

Notice that for every $s \leq t, \psi_{t}\left(s, t_{2}, \ldots\right)=\psi_{t-s}\left(t_{2}, \ldots\right)$. Using this observation, we find

$$
\begin{align*}
\mathbb{P}\left[T_{1} \leq t, A_{t} \leq x\right] & =\mathbb{P}\left[T_{1} \leq t, \psi_{t}\left(T_{1}, T_{2}, \ldots\right) \leq x\right] \tag{4}\\
& =\int_{0}^{t} \mathbb{P}\left[\psi_{t}\left(s, T_{2}, \ldots\right) \leq x\right] d F(s) \tag{5}\\
& =\int_{0}^{t} \mathbb{P}\left[\psi_{t-s}\left(T_{2}, \ldots\right) \leq x\right] d F(s) \tag{6}\\
& =\int_{0}^{t} a_{x}(t-s) d F(s)=\left(a_{x} * F\right)(t) \tag{7}
\end{align*}
$$

Thus $a_{x}(t)=\mathbf{1}_{t \leq x}(1-F(t))+\left(a_{x} * F\right)(t)$.
Solution 8.4 Let $S_{k}=T_{1}+\ldots+T_{k}$. For $t \geq 0$,

$$
\begin{aligned}
g(t) & =\mathbb{P}\left[Y_{t}=1\right] \\
& =\mathbb{P}\left[Y_{t}=1, T_{1}>t\right]+\mathbb{P}\left[Y_{t}=1, T_{1} \leq t\right] \\
& =\mathbb{P}\left[U_{1}>t\right]+\mathbb{E}\left[\sum_{k \geq 0} 1_{\left\{S_{k} \leq t<S_{k}+U_{k+1}\right\}} 1_{\left\{T_{1} \leq t\right\}}\right] \\
& =\mathbb{P}\left[U_{1}>t\right]+\mathbb{E}\left[\sum_{k \geq 1} 1_{\left\{T_{1}+S_{k}-S_{1} \leq t<T_{1}+S_{k}-S_{1}+U_{k+1}\right\}}\right]
\end{aligned}
$$

where T_{1} is independent of $S_{k}-S_{1}$ and of U_{k+1}, and $S_{k}-S_{1} \stackrel{(d)}{=} S_{k-1}$ for $k \geq 1$. This implies that

$$
\begin{aligned}
g(t) & =\mathbb{P}\left[U_{1}>t\right]+\int_{0}^{t} \mathbb{E}\left[\sum_{k \geq 1} 1_{\left\{S_{k-1} \leq t-s<S_{k-1}+U_{k+1}\right\}}\right] d F(s) \\
& =h(t)+\int_{0}^{t} g(t-s) d F(s)
\end{aligned}
$$

