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Chapter 1

Markov Chains: Generalities

Framework: S finite or countable set. When the setup is not specified, all the random variables

are defined on some abstract probability space (Ω,F ,P).

Goals:

• Define and motivate Markov Chains via transition probabilities.

• Present the connection with linear algebra and graph theory.

• Simulation of MC from uniforms.

• Markov and strong Markov properties.

1.1 Transition probabilities and Markov Chains

Definition 1.1. We call distribution on S a probability measure µ on S. It is identified

with a collection µ = (µx)x∈S of numbers satisfying

(i) ∀x ∈ S µx ≥ 0, and

(ii)
∑

x∈S µx = 1.

Example 1.1 (Uniform distribution). If S is finite, the uniform distribution µ is defined by

∀x µx =
1

|S|
.

.

7
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Example 1.2 (Dirac distribution). For fixed z ∈ S, the Dirac distribution δz = (δzx)x∈S at z is

defined by

∀x ∈ S δzx =

{
1 if x = z,

0 if x 6= z.

Definition 1.2. A transition probability is a collection P = (px,y)x,y∈S such that:

(i) ∀x, y ∈ S px,y ≥ 0, and

(ii) ∀x ∈ S
∑

y∈S px,y = 1.

Equivalently, P is a transition probability if for every fixed x ∈ S, px,· := (px,y)y∈S is a

distribution on S. There are a few different representations of transition probabilities.

Graph representation We can see (S, P ) as a weighted oriented graph with the property

that the weights leaving any vertex must be nonnegative and sum to 1: the vertex set is S, the

edges are all the pairs (x, y) ∈ S2, and the weights are pxy.
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Figure 1.1: Transition probabilities as weighted graphs.

Matrix interpretation Assume S is finite, say S = {1, . . . , N}. Then P = (pij)1≤i,j≤N

is a matrix with nonnegative entries (by Item (i)), and such that each line sums to one (by

Item (ii)). Such a matrix is called a stochastic matrix. When S is a general finite set, we can

always enumerate its elements to see P as a |S| × |S| matrix.

Operator interpretation Write L∞(S) for the set of bounded function on S. Let P be a

transition probability. To every function f ∈ L∞(S), we associate a function Pf defined by

∀x ∈ S (Pf)x =
∑
y∈S

px,yfy.
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Since |
∑

y∈S px,yfy| ≤
∑

y∈S px,y|fy| ≤ ‖f‖∞, the function Pf is well defined, bounded, and

satisfies ‖Pf‖∞ ≤ ‖f‖∞. This allows us to identify P with the operator f 7→ Pf acting on

L∞(S). Items (i) and (ii) correspond to the properties that P ≥ 0 (i.e. Pf ≥ 0 for all f ≥ 0 )

and P1 = 1.

Definition 1.3. Let P be a transition probability, µ a distribution on S.

A sequence (Xn)n≥0 of random variables with values in S is a Markov Chain with initial

distribution µ and transition probability P (written MC(µ, P )) if for every x0, . . . , xn ∈ S

P [X0 = x0, . . . , Xn = xn] = µ(x0)px0,x1 · · · pxn−1,xn .

In this case, we write X ∼ MC(µ, P ).

1.2 n-Step Transition Probabilities

In this section, we fix a transition probability P on S.

Definition 1.4. Let n ≥ 0. The n-step transition probability P n = (p
(n)
xy )x,y∈E associated

to P is defined by

p(n)
xy =

∑
x1,...,xn−1∈S

pxx1px1x2 · · · pxn−1y.

In the matrix interpretation of transition probabilities, P n coincides with the n-th power of P .

In the operator interpretation, P n is the n-fold composition of P by itself.

From the Markov Chain perspective, p
(n)
xy is the probability to move from x to y in n steps,

as stated in the following proposition.

Proposition 1.1. Let x, y ∈ S, n ≥ 0. If X ∼ MC(δx, P ), then

p(n)
x,y = P[Xn = y].

Notice that the proposition above implies that P n is itself a transition probability.

Proof. By first using the definition of the n-step transition probability and then the definition
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of a Markov Chain, we have

p(n)
xy =

∑
x0,x1,...,xn−1∈S

δxx0px0x1px1x2 · · · pxn−1y

=
∑

x0,...,xn−1∈S

P[X0 = x0, X1 = x1 . . . , Xn−1 = xn−1, Xn = y] = P[Xn = y],

where for the last equality we used the disjoint union

{Xn = y} =
⋃

x0,...,xn−1∈S

{
X0 = x0, . . . , Xn−1 = xn−1, Xn = y

}
.

1.3 One-step Markov property and homogeneity.

A central property of Markov Chain is its absence of memory. Furthermore, the chains we are

considering are homogeneous in time: if Xn = x, the probability to jump from x to y does not

depend on the time n. These two properties can be formalized as follow:

Proposition 1.2. Let µ be a distribution on S and P a transition probability. Let X be a

MC(µ, P ).

[1-step Markov Property] For all n ≥ 0 and x0, . . . , xn+1 ∈ S

P [Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn] = P [Xn+1 = xn+1 | Xn = xn] .

[Homogeneity] For all m,n ≥ 0 and x, y ∈ E

P [Xn+1 = y | Xn = x] = P [Xm+1 = y | Xm = x] .

Note: By convention when we write P [A | B] we assume P [B] > 0.

Proof. Let n ≥ 0, x, y ∈ S. By summing over all the possible values for X0, . . . , Xn−1, we have

P [Xn = x,Xn+1 = y] =
∑

x0,...,xn−1∈S

P [X0 = x0, . . . , Xn−1 = xn−1, Xn = x,Xn+1 = y]

=
∑

u0,...,un−1∈S

µu0pu0u1 · · · pun−1x · pxy

= P[Xn = x] · pxy.
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By dividing both side by P[Xn = x] (assuming it is positive), we obtain

P [Xn+1 = y |Xn = x] = pxy.

Since the right hand side does not depend on n, the equation above already establishes Homo-

geneity.

For the 1-Step Markov Property, let us consider x0, . . . , xn+1 ∈ S satisfying

P [X0 = x0, . . . , Xn = xn] > 0.

By using the definition of a Markov Chain,

P [Xn+1 = xn+1 | X0 = x0, . . . , Xn = xn] =
P [X0 = x0, . . . , Xn+1 = xn+1]

P [X0 = x0, . . . , Xn = xn]

=
µx0px0x1 · · · pxnxn+1

µx0px0x1 · · · pxn−1xn

= pxnxn+1 = P [Xn+1 = xn+1 | Xn = xn] .

1.4 Existence

Theorem 1.3. Let P = (pxy)x,y∈S be a transition probability on S. Then there exist:

• a measurable space (Ω,F),

• a collection of probability measures (Px)x∈S on (Ω,F), and

• a sequence of random variables X = (Xn)n≥0 on (Ω,F), such that

X ∼ MC(δx, p) under Px.

for every x ∈ S.

Proof. We first fix a distribution µ on S with µx > 0 for every x ∈ S (see exercises for the

existence of such a distribution) and consider some abstract probability space (Ω,F ,P). let X0

be a random variable with distribution µ. Let U1, U2, . . . be i.i.d. uniform random variables

on [0, 1], independent of X0. Our goal is to use these uniform random variables to construct

inductively a Markov Chain with the desired transition probabilities. To do this, we enumerate

S = {xi, i > 0} and set sij =
∑

k<j pxixk . Note here that si,j+1 − si,j = pxixj . Finally, set

Φ : S × [0, 1]→ S; (xi, u) 7→ xj if u ∈ (sij, si,j+1].
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The key property of the function Φ is that

∀x, y ∈ S P [Φ(x, U1) = y] = pxy. (1.1)

Define

Xn+1 = Φ(Xn, Un+1)

for every n > 0 (by induction). By first using independence of the Ui’s, and then Equation (1.1),

we find for every x0, . . . , xn ∈ S,

P [X0 = x0, . . . , Xn = xn] = P [X0 = x0,Φ(x0, U1) = x1, . . . ,Φ(xn−1, Un) = xn]

= µx0px0x1 · · · pxn−1xn .

Now if we define Px as P [ · | X0 = x], then we have for every x ∈ S that

Px [X0 = x0, . . . , Xn = xn] = δxx0px0x1 · · · pxn−1xn .

Remark 1.4. The proof above is constructive and provides us with a recipe to construct Markov

Chains from uniform random variables. This is particularly useful if one wants to simulate

Markov Chains.

Framework for the rest of the chapter S is finite or countable, P transition probability,

(Ω,F , (Px)x∈S) probability spaces, X = (Xn)n≥0 random variables such that for every x ∈ S

X ∼ MC(δx, p) under Px.

For µ a probability measure on S we write Pµ =
∑

x µxPx. This way, we have

X ∼ MC(µ, p) under Pµ.

1.5 Simple Markov Property

Notation. For every n ∈ N, write Fn = σ(X0, . . . , Xn).

As we have seen in Section 1.3, a Markov Chain X ∼ MC(µ, P ) satisfies two key properties:

absence of memory and homogeneity. The simple Markov Property can be seen as the combi-

nation of these two properties. In words, it states that for every fixed time k ∈ N and state

x ∈ S, the following holds:
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“Condition on Xn = x, (Xk+n)n≥0 is a MC(δx, P ), independent of Fk.”

This is formalized in the theorem below.

Theorem 1.5 (Simple Markov Property (SiMP)). Let µ be a distribution on S. Let x ∈
S, k ∈ N. For every f : SN → R measurable and bounded, for every Z Fk-measurable,

bounded random variable, we have

Eµ [f((Xk+n)n≥0) · Z | Xk = x] = Ex [f((Xn)n≥0)] Eµ [Z | Xk = x] . (1.2)

Lemma 1.6. Let µ be a distribution on S. Let x ∈ S, k ∈ N. For every N ≥ 0, x0, . . . xk ∈ S,

y0, . . . , yN ∈ S, we have

Pµ[Xk = y0, . . . , Xk+N = yN , X0 = x0, . . . , Xk = xk |Xk = x]

= Px[X0 = y0, . . . , XN = yN ]Pµ[X0 = x0, . . . , Xk = xk |Xk = x]

Proof. Without loss of generality, we may assume x = y0 = xk (otherwise both sides vanish,

and the equality is trivially true). By definition, and using δxy0 = 1, we have

Pµ[Xk = y0, . . . , Xk+N = yN , X0 = x0, . . . , Xk = xk]

= µx0px0x1 · · · pxk−1xkδ
x
y0
py0y1 · · · pyN−1yN

= Pµ[X0 = x0, . . . , Xk = xk]Px[X0 = y0, . . . , Xk = yk]

The statement follows by dividing both sides by Pµ[Xk = xk] = Pµ[Xk = x].

The lemma above establishes Theorem 4.15 when f is of the form f(ξ) = 1ξ0=y0,...ξN=yN

and Z = 1X0=x0,...,Xk=xk . The extension to general functions follows from standard measure-

theoretic approximation arguments, detailed below.

Proof of Theorem 1.5. Let Z be an Fk-measurable, bounded random variable. By linearity,

Lemma 1.6 implies that

Eµ [1A((Xk+n)n≥0) · Z | Xk = x] = Ex [1A((Xn)n≥0)] Eµ [Z | Xk = x] . (1.3)

for every A ⊂ SN of the form A = {ξ ∈ SN : ξ0 = y0, . . . ξN = yN}, for N ≥ 0 and

y0, . . . , yN ∈ S. The collection of such sets form a π-system generating the product σ-algebra

on SN. Furthermore, the collection of sets A satisfying (1.3) is a λ-system. Hence, by Dynkin’s

Lemma, Equation (1.3) is satisfied for all A ⊂ SN measurable.

Now, let f : SN → R measurable and bounded. Equation (1.2) is proved by first approxi-

mating f by step functions fk, and then using linearity.
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Corollary 1.7. Let µ be a distribution on S, x ∈ S, k ∈ N. For all f : SN → R measurable

and bounded, we have

Eµ [f((Xk+n)n≥0) | Xk = x] = Ex [f((Xn)n≥0)] .

Proposition 1.8 (Chapman Kolmogorov (CK)).

∀m,n ≥ 0 ∀x, y ∈ S p(m+n)
xy =

∑
z∈S

p(m)
xz p

(n)
zy .

Proof. Fix m,n and x, y ∈ S.

p(m+n)
xy = Px [Xm+n = y] =

∑
z∈S

Px [Xm+n | Xm = z] Px [Xm = z]

(SiMP)
=

∑
z∈S

Pz [Xn = y] Px [Xm = z] =
∑
z∈S

p(m)
xz p

(n)
zy .

1.6 Strong Markov Property

Definition 1.5. Let T : Ω→ N ∪ {+∞} be a random variable with values in N ∪ {+∞}. We

say that T is an (Fn)-stopping time if

∀n ∈ N {T = n} ∈ Fn.

Example 1.1 (Hitting Times). HA = min{n ≥ 0 : Xn ∈ A} (for A ⊂ S) and Hx = min{n ≥ 0 :

Xn = x} are stopping times.

Definition 1.6. Let T be a stopping time.

FT = {A ∈ F : ∀n ∈ N : {T = n} ∩ A ∈ Fn}.

In words, the strong Markov property says the following:

”Conditioned on {T <∞, XT = x}, (XT+n)n≥0 is a MC(δx, P ) independent of FT”

This is formalized in the following theorem, called the strong Markov property.
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Theorem 1.9 (Strong Markov Property (StMP)). Let µ be a distribution on S, T an

(Fn)-stopping time. Let x ∈ S, then for all f : SN → R measurable and bounded, and Z

FT -measurable and bounded, we have:

Eµ [f((XT+n)n≥0) · Z | T <∞, XT = x] = Ex [f((Xn)n≥0)] Eµ [Z | T <∞, XT = x] .

Proof. We will multiply each side of the equation by Pµ [T <∞, XT = x].

Eµ [f((XT+n)n≥0)Z1T<∞,XT=x] =
∑
k≥0

Eµ [f((Xk+n)n≥0)Z1T=k,XT=k]

=
∑
k≥0

Eµ [f((Xk+n)n≥0)Z1T=k | Xk = x] Pµ [Xk = x]

(SiMP)
=

∑
k≥0

Ex [f((Xn)n≥0)] Eµ [Z1T=k,Xk=x]

= Ex [f((Xn)n≥0]
∑
k≥0

Eµ [Z1T=k,Xk=x] = Ex [f((Xn)n≥0)] Eµ [Z1T<∞,XT=x] .
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Chapter 2

Classification of states

Framework: S finite or countable set, P = (pxy)x,y∈S transition probability, (Ω, F, (Px)x∈S)

probability spaces, X = (Xn)n≥0 ∼ MC(δx, P ) under Px, Pµ =
∑
µxPx.

Goals:

• Definition of recurrence/transience.

• Positive recurrence: renewal structure of the visit times.

• Decomposition of the state spaces into classes gathering sites with similar properties.

2.1 Recurrence/Transience

Notation: For x ∈ S, let Hx = min{n ≥ 1 : Xn = x} and ρx = Px[Hx <∞].

Definition 2.1. Let x ∈ S, we say that:

• x is recurrent if ρx = 1 .

• x is transient if ρx < 1 .

2.2 Dichotomy theorem

Notation: For x ∈ S let

Vx =
∑
n≥1

1Xn=x

17
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denote the total number of visits of x by the chain after the first step.

Theorem 2.1 (Dichotomy Theorem). x ∈ S:

• if x is recurrent, then Vx = +∞ Px-a.s..

• if x is transient, then Ex [Vx] <∞ .

Remark 2.2. The theorem excludes the case Px [Vx <∞] > 0 and Ex [Vx] = +∞.

2.3 Inter-visit times

Definition 2.2. Fix x ∈ S. The sequence (Ti)i≥1 of inter-visit times at x is defined by

induction by setting T1 = Hx and for all i ≥ 1

Ti+1 =

{
min{n ≥ 1 : XT1+...+Ti+n = x} if Ti <∞,

+∞ otherwise.

T1 T2 T3

T4 T5

time

S

x

X0

Figure 2.1: Illustration of the inter-visit times a x.

Lemma 2.3. For every i ≥ 1, x ∈ S, we have

Px[Ti <∞] = ρix. (2.1)

Proof. We prove the result by induction on i. Equation (2.1) holds for i = 1 by definition of ρx.

Now let i ≥ 1 and assume that (2.1) holds. In order to have Ti+1 < ∞, we must have

T1 <∞, therefore

Px[Ti+1 <∞] = Px [Ti+1 <∞, T1 <∞] = Px [Ti+1 <∞|T1 <∞] · ρx.
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Since T1 = Hx is a stopping time, we can apply the strong Markov property to get

Px [Ti+1 <∞|T1 <∞] = Px [Ti <∞] = ρix,

and the two equations above imply that Equation (2.1) holds for i+ 1.

2.4 Proof of the Dichotomy Theorem

Let x ∈ S. Notice that Vx is infinite if and only Ti is finite for every i. Therefore, using

{Ti <∞} ⊃ {Ti+1 <∞}, we have

Px [Vx =∞] = Px

[ ⋂
i≥1

{Ti <∞}
]

= lim
i→∞

Px[Ti <∞].

If x is recurrent, Lemma 2.3 that the limit above is equal to 1, hence

Px [Vx =∞] = 1.

Now, let us assume that x is transient, i.e. ρx < 1. For every i, by definition we have Ti < ∞
if and only if Vx ≥ i. This implies that Px [Vx ≥ i] = ρix by Lemma 2.3. Therefore, Vx is a

geometric random variable with parameter 1− ρx > 0, and its expectation is

Ex [Vx] =
ρx

1− ρx
<∞.

2.5 Positive/Null Recurrence

Notation: For x ∈ S write mx = Ex [Hx].

Definition 2.3. Let x ∈ S be a recurrent state. We say that x is:

• positive recurrent if mx <∞

• null recurrent if mx = +∞ .

The terminology positive/null recurrent is explained in the following section: we will see

that the positive recurrent states are the ones which are visited a “positive density” of times,

while null recurrent states are visited with a “null density” of times. See the discussion below

Theorem 2.4 for more details.
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2.6 Density of visits

Notation: For x ∈ S and n ≥ 0, let

V (n)
x =

n∑
k=1

1Xk=x

denote the number of visits to x up to time n. The ratio 1
n
Ey [V

(n)
x ] can be interpreted as the

average density of time that the chain spends at x before time n.

Theorem 2.4 (Density of visits). Let x, y ∈ S be such that Py[Hx <∞] = 1. Then

lim
n→∞

Ey [V
(n)
x ]

n
=

1

mx

.

This theorem can be interpreted as follows:

“In expectation, the density of time spent by the chain at x is 1
mx

.”

If x is transient, or null recurrent (mx =∞), this density is null. If y is positive recurrent, this

density is positive.

Remark 2.5. Notice that

Ey[V
(n)
x ] =

n∑
k=1

Ey[1Xk=x] =
n∑
k=1

p(k)
yx .

Therefore the theorem above can be rewritten as

lim
n→∞

1

n

n∑
k=1

p(k)
yx =

1

mx

.

Theorem 2.4 will be proved in Section 2.8, using some tools from renewal theory.

2.7 Renewal property of the visit times

Lemma 2.6. Let x, y ∈ S be such that x is recurrent and Py[Hx < ∞] = 1. Under Py, the

inter-arrival times (after the first visit of x) T2, T3, . . . at x are i.i.d. with law given by

∀t ∈ N Py [Ti = t] = Px [Hx = t] .

for every i ≥ 2.
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Remark 2.7. We emphasize that the lemma concerns the inter-visit times Ti starting at i = 2.

Indeed, the time T1 corresponds to the time needed to reach x from y, while T2, T3, · · · represent

the successive times to reach x from x. Therefore, in general, the distribution of T1 is not the

same as the following times if y 6= x. However, if y = x, we have T1, T2, · · · iid under Px.

Proof. We prove by induction on i that for every i ≥ 1 we have Py[T1, . . . , Ti <∞] = 1, and

∀f2, . . . , fi : N→ R bounded Ey[f2(T2) · · · fi(Ti)] = Ex[f2(Hx)] · · ·Ex[fi(Hx)].

The statement holds trivially for i = 1 (the equation above is an empty statement in this

case). Let i ≥ 1 and assume that the statement holds for i. One can check that the random

time T = T1 + · · · + Ti is a stopping time. Furthermore we have Py[T < ∞, XT = x] = 1

(by the induction hypothesis). By the strong Markov property, for every f2, . . . , fi+1 : N → R
bounded, we have

Ey [f2(T2) · · · fi+1(Ti+1)] = Ey [f2(T2) · · · fi+1(Ti+1)|T <∞, XT = x]

(StMP)
= Ey [f2(T2) · · · fi(Ti)] Ex [fi+1(min{n ≥ 1 : Xn = x})]

= Ex[f2(Hx)] · · ·Ex[fi+1(Hx)],

where we use the induction hypothesis in the last line.

2.8 Proof of the “density of visits” Theorem

Case 1: x transient. By the strong Markov property, we have Ey[Vx] <∞. Therefore

Ey[V
(n)
x ]

n
≤ Ey [Vx]

n
→ 0.

Case 2: x recurrent. By Lemma 2.6, we know that the inter-visit times T2, T3 . . . at x are i.i.d.

under Py and fulfill Ex [Ti] = Ex [Hx] = mx. Then we can use the Law of Large Numbers and

Py [T1 <∞] = 1. We find Py-a.s.,

lim
i→∞

T1 + . . .+ Ti
i

= mx.

Note that this includes the case of mx =∞, by the following truncation argument: if mx =∞,

consider K > 0. By the law of large numbers, Py-almost surely,

lim inf
n→∞

T2 + . . .+ Tn
n

≥ lim
n→∞

(T2 ∧K) + . . .+ (Tn ∧K)

n
= Ey[T2 ∧K].
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By monotone convergence, we can let K tend to infinity, and we obtain

lim
n→∞

T2 + . . .+ Tn
n

=∞

Py-almost surely.

Now we write Nn = V
(n)
x (the number of visits to x at time n). Following directly from the

definition of Nn we have that for any n > 0 that

T1 + . . .+ TNn−1 ≤ n < T1 + . . .+ TNn .

Hence, for every n > 0

Nn

T1 + . . . TNn
<
V

(n)
y

n
≤ Nn

T1 + . . .+ TNn−1

.

The upper and lower bounds each converge to 1
mx

almost surely. Hence, we can conclude

that Ey

[
V

(n)
x

n

]
→ 1

mx
by the Dominated Convergence Theorem (using the domination

V
(n)
y

n
≤ 1).

2.9 Communication Classes

Here we will see P as a weighted oriented graph.

Definition 2.4. Let x, y ∈ S. We say that y can be reached from x if there exists an n ≥ 0

such that p
(n)
xy > 0 and we write x→ y. Furthermore, we say that x and y communicate if

y → x and x→ y, and we write x↔ y.

Remark 2.8 (Probabilistic interpretation).

x→ y ⇐⇒ ∃n ≥ 0 Px[Xn = y] > 0 ⇐⇒ Px[∃n ≥ 0 Xn = y] > 0.

Proposition 2.9. ↔ is an equivalence relation on S.

Proof. Follows from Chapman-Kolmogorov equations.

Definition 2.5. The equivalence classes of ↔ are called communication classes of P .

If P has a single unique communication class, we say that P is irreducible.
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A communication class C is said to be closed if for any x, y ∈ S

x ∈ C, x→ y =⇒ y ∈ C.

Proposition 2.10. Let C be a communication class.

C is closed ⇐⇒ ∀x ∈ C Px[∀n ≥ 0 Xn ∈ C] = 1.

”If one starts in C, one never leaves.”

Proof.

(C is not closed) ⇐⇒ ∃x ∈ C ∃y ∈ S \ C x→ y

⇐⇒ ∃x ∈ C ∃y ∈ S \ C Px[∃n ≥ 0 Xn = y] > 0

⇐⇒ ∃x ∈ C Px[∃n ≥ 0 ∃y ∈ S \ CXn = y] > 0

⇐⇒ ∃x ∈ C Px[∃n ≥ 0 Xn ∈ S \ C] > 0

⇐⇒ ∃x ∈ C Px[∀n ≥ 0 Xn \ C] < 1.

2.10 Closure property of recurrence

Theorem 2.11. Let x, y ∈ S such that x → y. If x is recurrent then y is recurrent and

Px [Hy <∞] = Py [Hx <∞] = 1. In particular x↔ y.

Proof. We want to use that every time the chain visits x, it has a non-zero probability to visit y

after that, visiting x infinitely often should ensure that y is also visited infinitely often. Assume

y 6= x and x recurrent. Let z1, . . . , zk−1 be distinct elements of S, not equal to x or y such that

pxz1 · · · pzk−1y > 0. Then we have

0 = Px [Hx =∞] ≥ Px [X1 = z1, . . . , Xk−1 = zk−1, Xk = y,∀n > 0 Xk+n 6= x]

(SiMP)
= Px [X1 = z1, . . . , Xk = y]︸ ︷︷ ︸

>0

Py [∀n > 0 Xn 6= x]︸ ︷︷ ︸
Py [Hx=∞]

.
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Thus Py [Hx <∞] = 1. Next, we have to show that y is recurrent. Choose m,n such that

p
(n)
xy , p

(m)
yx > 0, we have

Ey [Vy] =
∑
k>0

p(k)
yy ≥

∑
k>0

p(m+k+n)
yy

(CK)

≥ p(m)
yx︸︷︷︸
>0

(∑
k>0

p(k)
xx

)
︸ ︷︷ ︸

=∞

p(n)
xy︸︷︷︸
>0

.

Hence, y is recurrent. To show that Px [Hy <∞] = 1, use the same argument as above, but

with the roles of x and y swapped (y → x, y recurrent), as before.

Remark 2.12. Let x ∈ S recurrent and x 6= y then

x→ y ⇐⇒ Px [Hy <∞] > 0 ⇐⇒ Px [Hy <∞] = 1.

Corollary 2.13. A recurrent class is always closed.

Proof. C recurrent, x ∈ C, if x → y then we must have y → x (otherwise x wouldn’t be

recurrent), therefore y ∈ C.

The theorem above gives us a simple criterion for transience:

Corollary 2.14. If x→ y but y 9 x, then x is transient.

2.11 Classification of states

Theorem 2.15 (Classification of states). Let C ⊂ S be a communication class. Then

exactly one of the following holds:

(i) For all x ∈ C, x is transient.

(ii) For all x ∈ C, x is null recurrent.

(iii) For all x ∈ C, x is positive recurrent.
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Proof. Fix x, y ∈ S with x↔ y. We prove that y is of the same type (transient, null recurrent

or positive recurrent) as x.

If x is transient then y is also transient by Theorem 2.11.

Let us now assume that x positive recurrent. Fix k ≥ 0 with p
(k)
xy > 0. By Chapman-

Kolmogorov, we have for all j > 0

p(k+j)
xy ≥ p(j)

xxp
(k)
xy .

Thus

1

n

n∑
i=1

p(i)
xy︸ ︷︷ ︸

→ 1
my

≥

(
1

n

n−k∑
j=1

p(j)
xx

)
︸ ︷︷ ︸

→ 1
mx

p(k)
xy︸︷︷︸
>0

.

Therefore, 1
my

> 0 and y is positive recurrent.

Definition 2.6. A communication class C ⊂ S is said to be transient (resp. recurrent,

null recurrent, positive recurrent) if all its elements x ∈ C are transient (resp. recurrent,

null recurrent, positive recurrent).

A consequence of the theorem above is that we can partition the state space S as

S = T ∪R1 ∪R2 ∪ · · · ,

where T is the set of transient states (T is equal to the union of all the transient classes), and

R1, R2, . . . , are the recurrent classes.

We can classify the behavior of the chain by differentiating if Xn starts in some Rk and if

Xn starts in T . In the former case the chain remains in Rk forever. If Xn starts in T , either it

remains in T forever, or at some point it moves into an Rk and remains there forever.

Definition 2.7. When P is irreducible, all the sites x ∈ S are in the same class, and we

simply say that P is transient (resp. recurrent, null recurrent, positive recurrent) in the

corresponding cases.

2.12 Finite classes
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Proposition 2.16. Let R be a recurrent class, if R is finite, then R is positive recurrent.

In particular, if S is finite, then every recurrent state is positive recurrent.

Proof. Fix x ∈ R, since R is closed we have for every n > 0

1 = Px [Xn ∈ R] =
∑
y∈R

p(n)
xy .

Hence,

1 =
∑
y∈R

1

n

n∑
k=1

p(k)
xy →

∑
y∈R

1

my

.

Thus, there must be a y ∈ R such that my < ∞, implying that the entire class is positive

recurrent.

2.13 Finite state space

Proposition 2.17. If S is finite, then there exists a recurrent state x ∈ S.

Proof. ∑
x∈S

Vx =
∑
x∈S

∑
n≥0

1Xn=x =
∑
n≥0

∑
x∈S

1Xn=x =
∑
n≥0

1 =∞

Fix some y ∈ S.

∑
x∈S

Ey [Vx] = Ey

[∑
x∈S

Vx

]
=∞.

Thus we know there exists x ∈ S such that Ey [Vx] =∞. Using that Vx = Vx1Hx<∞, we find

∞ = Ey [Vx1Hx<∞]
(StMP)

= (1 + Ex [Vx])Py [Hx <∞] ≤ 1 + Ex [Vx] .

Therefore, Ex [Vx] =∞, which concludes that x is recurrent.



Chapter 3

Convergence to equilibrium

Framework: S finite or countable set, P = (pxy)x,y∈S transition probability, (Ω, F, (Px)x∈S)

probability spaces, X = (Xn)n≥0 ∼ MC(δx, P ) under Px, Pµ =
∑
µxPx.

Goals:

• Definition stationary/reversible distributions.

• Criteria for existence of stationary distributions.

• Behavior of Xn for n large?

3.1 Stationary Distributions

Notation: Let µ be a distribution on S. We define the distribution µP by setting

∀y ∈ S (µP )y =
∑
x∈S

µxpxy.

(One can check that that it indeed defines a distribution.)

Write µn for the law of Xn under Pµ. It follows from the simple Markov property that the

sequence (µn) satisfies the induction{
µ0 = µ,

µn+1 = µnP for all n ≥ 0.

For n large, we expect µn to be close to a fixed point of the map λ→ λP . Such a distribution π

is invariant under the dynamics of the process, and the relationship to the long-time behavior

of the Markov Chain will be rigorously analyzed in this chapter.

27
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Definition 3.1. Let π be a distribution on S, we say that π is stationary (for P ) if

π = πP.

When S is finite and if we see P as a matrix, then a stationary distribution corresponds to

a left eigenvector π of P for the eigenvalue 1.

Probabilistic interpretation If π is a stationary distribution, then for all n ≥ 0

Pπ[Xn = x] = πx. .

3.2 Reversibility

Definition 3.2. A distribution π on S is said to be reversible (for P ) if for any x, y ∈ S

πx pxy = πy pyx.

The equation above is equivalent to

Pπ[X0 = x,X1 = y] = Pπ[X0 = y,X1 = x].

Namely, the starting distribution π is reversible if under Pπ, the probability of starting at y

and going to x is equal to the probability of starting at x and going to y. More generally,

one can prove (exercise) by induction that π is reversible if and only if for every n ≥ 1 and

x0, . . . , xn ∈ S

Pπ [X0 = x0, . . . , Xn = xn] = Pπ [X0 = xn, . . . , Xn = x0] .

“The probability of a trajectory is equal to its time-reversal.”

Proposition 3.1. Let π be a distribution on S. If π is reversible, then π is stationary.

Proof. Let π be a reversible distribution. For every y ∈ S, we have

(πP )y =
∑
x∈S

πxpxy
reversibility

=
∑
x∈S

πypyx = πy
∑
x∈S

pyx = πy.
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3.3 Stationary Distributions for Irreducible Chains

Recall that mx = Ex[Hx], where Hx is the hitting time of x.

Theorem 3.2. Assume that P is irreducible.

• If P is transient or null recurrent, then there is no stationary distribution.

• If P is positive recurrent, then there exists a unique stationary distribution given by

πx =
1

mx

.

Proof. Case 1: P transient. Assume for contradiction that there exists a stationary distribu-

tion π. For every x ∈ S and every n ≥ 0 we have

πx = Pπ[Xn = x].

Write Lx for the last visit time of x. The dichotomy theorem together with the strong Markov

property imply that Lx is finite Pπ-almost surely. Therefore

Pπ[Xn = x] ≤ Pπ[Lx ≥ n]
n→∞−−−→ 0.

Therefore, πx = 0 for every x ∈ S, this is a contradiction to
∑

x∈S πx = 1.

Case 2: P null recurrent. Assume for contradiction that there exists a stationary distribu-

tion π. As in the transient case we show πx = 0 for every x. For every x ∈ S and for all n > 0,

we have

πx =
1

n

n∑
k=1

Pπ [Xk = x] =
Eπ[V

(n)
x ]

n
=
∑
y∈S

πy
Ey[V

(n)
x ]

n
. (3.1)

Since Py[Hx <∞] = 1 for every y ∈ S, by the density of visit theorem, we have

lim
n→∞

Ey[V
(n)
x ]

n
=

1

mx

= 0.

By the Dominated Convergence Theorem (using the domination Ey [V
(n)
x ]

n
≤ 1), we can take

the limit n→∞ in (3.1) to conclude πx = 1
mx

= 0.

Case 3: P positive recurrent. The same argument as in the null recurrent case shows that

there is a unique candidate for a stationary distribution, given by

πx =
1

mx

.
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To conclude, one needs to prove that this measure is indeed a stationary distribution.

First, let us fix k ≥ 1. By Theorem 2.4 (density of visits) we have for every y ∈ S

1

my

= lim
n→∞

1

n

n∑
j=1

p(j)
yy

(CK)
= lim

n→∞

∑
x∈S

(
1

n

n∑
j=k

p(j−k)
yx

)
p(k)
xy

(Fatou)

≥
∑
x∈S

lim inf
n→∞

(
1

n

n∑
j=k

p(j−k)
yx

)
p(k)
xy

=
∑
x∈S

1

mx

· p(k)
xy .

Analogously, for a fixed x ∈ S, we have

1 = lim
n→∞

1

n

n∑
j=1

Px [Xj ∈ S] = lim
n→∞

∑
y∈S

1

n

n∑
j=1

Px [Xj = y]
(Fatou)

≥
∑
y∈S

1

my

.

We now prove that the two inequalities above are actually equalities. First, we sum the first

inequality over y and get ∑
y∈S

1

my

≥
∑
y∈S

(∑
x∈S

1

mx

p(k)
xy

)
=
∑
x∈S

1

mx

.

Thus the inequality must be an equality. Namely, for every k > 0 and for all y ∈ S, we have

1

my

=
∑
x∈S

1

mx

p(k)
xy . (3.2)

We can use this to show that the second inequality is actually an equality. Fix y ∈ S and note

that 1
my

> 0 by positive recurrence. We have

1

my

= lim
n→∞

1

n

n∑
k=1

(∑
x∈S

1

mx

p(k)
xy

)

= lim
n→∞

∑
x∈S

1

mx

(
1

n

n∑
k=1

p(k)
xy

)
(DCT)

=
∑
x∈S

1

mx

1

my

.

Hence, πx = 1
mx

defines a distribution, which is stationary (this follows from Equation (3.2)

with k = 1).
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3.4 Periodicity

Definition 3.3. Let x ∈ S. The period of x is defined by

dx = gcd{n > 0 : p(n)
xx > 0} .

By convention gcd(∅) =∞.

The following proposition asserts that the period is constant on the communication classes.

Proposition 3.3. Let x, y ∈ S. If x↔ y, then dx = dy.

Proof. Let x 6= y. We prove that dy|dx.
Let us fix k, ` ≥ 0 such that p

(k)
yx , p

(`)
xy > 0. Since p

(k+`)
yy ≥ p

(k)
yx p

(`)
xy > 0 we have that dy|k + `.

Now we show that dy is a common divisor of {n > 0 : p
(n)
xx > 0}, this will imply our claim. For

every n > 0 satisfying p
(n)
xx > 0, we have

p(k+`+n)
yy ≥ p(k)

yx p
(n)
xx p

(`)
xy > 0,

hence dy|k + `+ n. Since dy|k + `, we also have dy|n.

Consequence: If P is irreducible, we have

∀x, y ∈ S dx = dy.

Definition 3.4. We say that P is aperiodic if for every x ∈ S

dx = 1.

Proposition 3.4. Let x be in S. We have dx = 1 if and only if there is an n0 ≥ 1 such

that for every n ≥ n0 we have that p
(n)
xx > 0.

We use the following lemma from number theory.

Lemma 3.5. Let A ⊂ N \ {0} be stable under addition (i.e. x, y ∈ A =⇒ x+ y ∈ A). Then

gcd(A) = 1 ⇐⇒ ∃n0 ∈ N : {n ∈ N : n ≥ n0} ⊂ A.
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Proof.

⇐ Follows from the fact that gcd(n0, n0 + 1) = 1.

⇒ Assume gcd(A) = 1. Let a ∈ A be arbitrary and a =
∏k

i=1 p
αi
i be its prime factorization.

Since gcd(A) = 1, one can find b1, . . . , bk ∈ A such that for all i pi - bi. This implies

gcd(a, b1, . . . , bk) = 1.

Write d = gcd(b1, . . . , bk). By Bezout’s Theorem, we can pick u1, . . . , uk ∈ Z such that

u1b1 + . . .+ ukbk = d.

Now, choose an integer λ large enough such that ui + λa ≥ 0 for every i and define

b = (u1 + λa)b1 + . . .+ (uk + λa)bk = d+ λ(b1 + . . .+ bk)a.

The first expression shows that b ∈ A, and the second implies that gcd(a, b) = gcd(a, d) = 1.

To summarize, we found a, b ∈ A such that gcd(a, b) = 1.

Without loss of generality, we may assume a < b. Since gcd(a, b) = 1, the set B =

{b, 2b, . . . , ab} covers all of the residue classes modulo a. Since a < b, this implies that B +

{ka, k ∈ N} includes every number z ≥ ab. This concludes the proof by choosing n0 = ab.

Proof of Proposition 3.4. The set Ax = {n > 0 : p
(n)
xx > 0} under addition, because p

(m+n)
xx ≥

p
(m)
xx p

(n)
xx for every m,n > 0. The proof follows by applying the lemma to A = Ax.

3.5 Product Chain

Our goal in the next two sections is to define two Markov Chains X a MC(µ, P ) and X̃ a

MC(ν, P ) on the same probability space such that Xn = X̃n for n large.

To achieve this, we first consider two independent chains X and Y . We then show that the

chains meet almost surely (under some assumptions on P ) at some random time T . Then we

ask that the chains follow the same trajectory for t > T .

Notation: Let µ, ν be two distributions on S, we write µ⊗ν for the distribution on S2, defined

by

∀(x, y) ∈ S2 (µ⊗ ν)(x,y) = µxνy.

Proposition 3.6. Let X ∼ MC(µ, P ) and Y ∼ MC(ν, P ) be two independent Markov

Chains. The sequence of random variables (X, Y ) := ((Xn, Yn))n≥0 is a Markov Chain on
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T

S Y

X

X̃

Figure 3.1: A coupling of two simple random walks started from 6 and 0

S2 with initial distribution µ⊗ ν and transition probability P defined by

pω,ω′ = pxx′pyy′ .

Remark 3.7. To see that P = (pw,w′)w,w′∈S2 is a transition probability, calculate∑
w′∈S

pww′ =
∑
x′,y′∈S

pxx′pyy′ = 1.

Proposition 3.8. If P is irreducible and aperiodic then P is irreducible and aperiodic.

Remark 3.9. Aperiodic is important. Indeed P irreducible does not imply that P is irreducible

in general. For example, consider S = {1, 2} and p12 = p21 = 1. In this case, P is irreducible,

but P is not irreducible.

Proof. Let w = (x, y) and w′ = (x′, y′) ∈ S2. By irreducibility we can choose k, ` ≥ 0 such that

p
(k)
xx′ , p

(`)
yy′ > 0. Then for every n ≥ max(k, `) we have

p
(n)
ww′ = p

(n)
xx′p

(n)
yy′ ≥ p

(k)
xx′p

(n−k)
x′x′ p

(`)
yy′p

(n−`)
y′y′ > 0.

This holds as the two terms p
(n−k)
x′x′ and p

(n−`)
y′y′ are strictly positive for n large enough.

Proposition 3.10. If π is stationary for P then π ⊗ π is stationary for P .



34 CHAPTER 3. CONVERGENCE TO EQUILIBRIUM

Proof. For every (y, y′) ∈ S2 we have

πyπy′ =
∑
x∈S

πxpxy
∑
x′∈S

πx′px′y′ =
∑

(x,x′)∈S2

πxπx′pxypx′y′ .

3.6 Coupling Markov Chains

In this whole section, we fix X ∼ MC(µ, P ) and Y ∼ MC(ν, P ) two independent Markov

Chains on some probability space (Ω,F ,P).

Definition 3.5. We define the stopping time (for the product chain (X, Y ))

T = min{n ≥ 0 : Xn = Yn}.

Remark 3.11. To see that T is indeed a stopping time, notice that T = HA with A = {(x, y) ∈
S2 : x = y}.

Proposition 3.12. For every n ≥ 0

∑
x∈S

|P [Xn = x]− P [Yn = x] | ≤ 2P[T > n].

Lemma 3.13. The sequence of random variable X̃ = (X̃n)n≥0 defined by

X̃n =

{
Yn for n < T

Xn for n ≥ T
.

is a Markov Chain on S with initial distribution ν and transition probability P .

Proof. Define Ỹ by

Ỹn =

{
Xn for n < T

Yn for n ≥ T
.

Let n ≥ 0. Writing X[n] for (X1, . . . , Xn), we show that (X[n], Y[n]) and (Ỹ[n], X̃[n]) have the

same distribution. This implies that X̃[n] has the same distribution as Y[n], which concludes the

proof. To achieve this, we fix x = (x0, . . . , xn) and y = (y0, . . . , yn) ∈ Sn, and prove that

P[X[n] = x, Y[n] = y] = P[Ỹ[n] = x, X̃[n] = y]. (3.3)
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If xi 6= yi for every i ≤ n, then the trajectories x and y do not intersect and (3.3) is a direct

consequence of the definition of (X̃, Ỹ ). Now, we assume that xi = yi for some index i ≤ n and

we prove that (3.3) also holds in this case. Define

t = min{i : xi = yi}.

In particular we have xt = yt. If X[n] = x, Y[n] = y then T = t. Furthermore, by using xt = yt
and the independence between X and Y , we find

P[X[n] = x, Y[n] = y] = P[X[n] = (x0, . . . , xt, yt+1, . . . , yn), Y[n] = (y0, . . . , yt, xt+1, . . . , xn)]

= P[Ỹ[n] = x, X̃[n] = y].

which concludes the proof.

Proof of Proposition 3.12. We use the coupling between X and X̃ to conclude the proof. For

every n ≥ 0∑
x∈S

|P [Xn = x]− [Yn = x]| =
∑
x∈S

∣∣∣P [Xn = x]− P
[
X̃n = x

]∣∣∣
=
∑
x∈S

∣∣∣P [Xn = x, T ≤ n] + P [Xn = x, T > n]

− P
[
X̃n = x, T ≤ n

]
− P

[
X̃n = x, T > n

] ∣∣∣
≤
∑
x∈S

P [Xn = x, T > n] + P
[
X̃n = x, T > n

]
= 2P [T > n] .

3.7 Convergence to equilibrium

Theorem 3.14. Assume that P is irreducible, aperiodic, and admits a stationary distribu-

tion π. Then for every distribution µ on S and x ∈ S

lim
n→∞

Pµ [Xn = x] = πx.

Equivalently: Under Pµ : Xn
(law)→ X∞ where X∞ ∼ π.

Equivalently: For all f : S → R bounded: limn→∞Eµ [f(Xn)] =
∫
S
fdπ.
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Proof. Consider the product chain (Xn, Yn)n≥0 as before, where X has initial distribution µ

and Y starts with the invariant distribution π .

By Proposition 3.8, the product transition probability P is irreducible. Furthermore, by

Proposition 3.10, it admits a stationary distribution. By Theorem 3.2, this implies that P

is positive recurrent. Fix an arbitrary vertex a ∈ S and consider the hitting time H(a,a) for

the product chain. Since P is irreducible and recurrent, Theorem (2.11) (closure property of

recurrence) implies that the hitting time H(a,a) is finite almost surely. Therefore, the stopping

time T = min{n ≥ 0 : Xn = Yn} is also finite almost surely, because T ≤ H(a,a). By applying

Proposition 3.12, we have that for every x ∈ S

|P [Xn = x]− πx| = |P [Xn = x]− P [Yn = x]| ≤ 2P [T > n]
n→∞−−−→ 0.

3.8 Null recurrent and transient cases

Theorem 3.15. Assume that P is irreducible, aperiodic, and null recurrent or transient.

Then for every distribution µ and every x ∈ S

lim
n→∞

Pµ [Xn = x] = 0.

Lemma 3.16. Assume that P is irreducible and recurrent. For every µ distribution on S, any

i ≥ 0, and every x ∈ S

lim
n→∞

|Pµ [Xn = x]−Pµ [Xn+i = x] | = 0

Proof. Fix i ≥ 0 and consider the distribution µi = µP i (i.e. µi is the law of Xi under Pµ).

Let X ∼ MC(µ) and Y ∼ MC(µi) be two independent Markov Chains. For each n ≥ 0, the

distribution of Yn is µiP
n = µP i+n (by Chapman Kolmogorov equations), therefore

∀x ∈ S P[Yn = x] = P[Xn+i = x].

The stopping time T = min{n ≥ 0 : Xn = Yn} is finite almost surely as P is irreducible and

recurrent. By Proposition 3.12, we have limn→∞ |P[Xn = x]− P[Yn = x] = 0|, i.e.

lim
n→∞

|P [Xn = x]− P [Xn+i = x]| = 0.
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Proof of Theorem 3.15. We distinguish two cases, depending whether P is transient or recur-

rent.

Case 1: Assume P transient. Let X, Y ∼ MC(µ, P ) independent. Fix x ∈ S, since (x, x)

is transient, the last visit L = max{n ≥ 0 : (Xn, Yn) = (x, x)} is finite almost surely (by the

Dichotomy Theorem). Hence,

P[Xn = x]2 = P [Xn = x, Yn = x] ≤ P [L ≥ n]
n→∞−−−→ 0.

Case 2: Assume P is null recurrent. Fix x ∈ S and ε > 0. Since x is a null recurrent state, by

Theorem 2.4 (density of visits), we can choose k such that

1

k

k−1∑
i=0

p(i)
xx < ε.

For every n ≥ 0, define the stopping time H = min{j ≥ n : Xj = x} ( representing the first hit

time of x after time n). Since the chain does not visit x between time n and time H, we have

1

k

k∑
i=1

Pµ [Xn+i = x] ≤ 1

k

k−1∑
i=0

Pµ [XH+i = x]
(StMP)

=
1

k

k−1∑
i=0

Px [Xi = x] ≤ ε.

In order to conclude, we use Lemma 3.16: for n large Pµ [Xn = x] is closed to the average
1
k

∑k
i=1 Pµ [Xn+i = x], which is small by the equation above. More precisely, for every n ≥ 0 ,

we have

Pµ [Xn = x] =
1

k

k∑
i=1

Pµ [Xn = x]

≤ 1

k

k∑
i=1

|Pµ [Xn = x]−Pµ [Xn+i = x]|︸ ︷︷ ︸
Lemma 3.16−−−−−−−→

n→∞
0

+
1

k

k∑
i=1

Pµ [Xn+i = x]︸ ︷︷ ︸
≤ε

.

Since P is irreducible and recurrent, Lemma 3.16 concludes that

lim sup
n→∞

Pµ [Xn = x] ≤ ε.
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3.9 Monte-Carlo Markov Chain: Hardcore model

Reference: see Chapter 7 of [2].

We consider a 8x8 square grid, i.e. the graph G = (V,E) where V = {1, . . . , 8}2 and

E = {{x, y} ⊂ V : ‖x − y‖1 = 1}. In the hardcore model, particles are placed randomly on

the vertices in such a way that

• there is at most one particle on each vertex; and

• no two neighbours are occupied by a particle.

Formally, a configuration is an element ξ ∈ {0, 1}V . Such a configuration associates to each

vertex v ∈ V a value ξ(v) = 0 or ξ(v) = 1, where ξ(v) = 1 is interpreted as the presence of

a particle at v. Such a configuration is called admissible if min(ξ(v), ξ(w)) = 0 for every edge

{v, w} ∈ E.

Question: How to simulate Y , a uniform random variable in

S = {ξ ∈ {0, 1}V : ξ is admissible}?

We will construct a Markov chain on S with stationary distribution π, the uniform distri-

bution on S. We start on a fixed admissible configuration X0 = η ∈ S. For every n ≥ 0, we

define Xn+1 from Xn as follows:

• Pick a vertex v uniformly at random in V .

• If a neighbour of v is occupied in Xn, we do nothing and set Xn+1 = Xn.

• If none of the neighbours of v is occupied in Xn, then we set Xn+1(v) to be the result of

a fair coin, and we leave all the other values unchanged: we set Xn+1(w) = Xn(w), for

all w 6= v.

Proposition 3.17. For every ξ ∈ S we have

lim
n→∞

P[Xn = ξ] =
1

|S|
.
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Proof. The chain defined above is a Markov Chain with transition probability P defined by

pξ,ψ =


1

2|V | if ψ and ξ differ exactly at one vertex,

1− k
2|V | if ξ = ψ,

0 otherwise.

where k = k(ξ) is the number of admissible configurations ψ that differ from ξ exactly at one

vertex. The definition of pξ,ψ is symmetric in ξ, ψ ∈ S, therefore pξ,ψ = pψ,ξ, which implies that

∀ξ, ψ ∈ S 1

|S|
pξ,ψ =

1

|S|
pψ,ξ.

This implies that the uniform distribution is reversible, and therefore stationary.

Furthermore, the chain is irreducible (one can check that 0↔ ξ for all ξ ∈ S) and aperiodic

(because pξ,ξ > 0 for every ξ). See Exercise 6.5 for more details. The proof follows by applying

Theorem 3.14.
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Chapter 4

Renewal Processes

Framework: (Ω,F ,P) probability space. In the whole chapter, we fix

T1, T2, . . . i.i.d. random variables on R+

satisfying P [T1 = 0] < 1. We write

µ = E [T1] ∈ (0,∞] and F (t) = P [T1 ≤ t]

for the expectation and the distribution function of T1, respectively.

4.1 Definition

Definition 4.1. Let i ≥ 1. The random variable Ti is called the i-th inter-arrival time,

and we define the i-th arrival time (or i-th renewal time) as

Si = T1 + · · ·+ Ti.

Definition 4.2. The continuous time stochastic process (Nt)t≥0 defined by

∀t ≥ 0 Nt =
∞∑
k=1

1Sk≤t

is called the renewal process with arrival distribution F .

In words, Nt counts the number of renewal times in the interval [0, t].

41
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Examples:

(i) T1 = 1 a.s. (”deterministic case”)

(ii) T1 ∼ U(0, 1).

4.2 Exponential inter-arrival times

If the inter-arrival times are exponential random variables with parameter λ, then the renewal

process N is called a Poisson Process with parameter λ. Such process will be analyzed in more

depth in Chapter 7. The name comes from the distribution of Nt, which is a Poisson random

variable, as stated in the following proposition.

0 1 2 3 4 5

0

1

2

3

4

Proposition 4.1. Fix λ > 0 and assume that

T1 ∼ Exp(λ)

(i.e. F (t) = 1− eλt for t ≥ 0). In this case, for every fixed t ≥ 0, we have

Nt ∼ Pois(λt).

Proof. We prove by induction on n, that

∀t ≥ 0 P[Nt = n] =
(λt)n

n!
e−λt (4.1)
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For n = 0, we have Nt = 0 if there is no renewal before time t, therefore,

P[Nt = 0] = P[T1 ≥ t] = e−λt.

Let n ≥ 0 and assume that (4.1) holds. Fix t ≥ 0. There are n + 1 renewal before time t iff

T1 < t and there are exactly n renewal times between T1 and t. By conditioning on T1, and

using independence, we obtain

P[Nt = n+ 1] = P[T1 < t, T1 + · · ·+ Tn+1 ≤ t, T1 + · · ·+ Tn+2 > t]

=

∫ ∞
0

P[s < t, s+ T2 + · · ·+ Tn+1 ≤ t, s+ T2 + · · ·+ Tn+2 > t]λe−λsds

=

∫ t

0

P[T2 + · · ·+ Tn+1 ≤ t− s, T2 + · · ·+ Tn+2 > t− s]λe−λsds

=

∫ t

0

P[Nt−s = n]λe−λsds

By the induction hypothesis, we obtain

P[Nt = n+ 1] =

∫ t

0

(λ(t− s))n

n!
λe−λtds =

[
−(λ(t− s))n+1

(n+ 1)!

]t
0

e−λtds =
(λt)n+1

(n+ 1)!
e−λt.

4.3 Bernoulli inter-arrival times

In this section, we give another example where the law of Nt can be computed explicitly.

Proposition 4.2. Fix α > 0 and 0 < β ≤ 1 and assume that

T1 =

{
α with probability β

0 with probability 1− β

(i.e. T1
(law)
= αZ, where Z ∼ Ber(β)). In this case, for every fixed t ≥ 0, we have

Nt
(law)
= X0 +

bt/αc∑
i=1

(1 +Xi).

where the Xi’s are i.i.d. geometric random variables with parameter β.
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Proof. The sequence T1, T2, . . . is a random sequence of numbers taking values in {0, α}. Since

Ti = α with probablity β > 0, we know (by Borel-Cantelli Theorem) that the value α appears

infinitely many times. Define X0 ∈ {0, 1, 2 . . .} to be the numbers of 0’s before the first α, and

for every i ≥ 1, define Xi as the number of 0’s between the i-th and the i + 1-th α. Notice

that X0, X1, . . . is an iid sequence of geometric random variables with parameter β. Indeed, by

independence, for every i ≥ 0 and every k0, . . . , ki we have

P[X0 = k0, . . . , Xi = ki] =
i∏

j=0

P[T`j+1 = 0, . . . , T`j+kj−1 = 0, T`j+kj = α] =
i∏

j=0

(1− β)kjβ.

where we set `0 = 0 and `j = k1 + · · ·+ kj for j ≥ 1.

By definition, the number of renewal times before time t is exactly the number of terms

in the sequence (T1, T2, . . .) before we see bt/αc times the value α. Following the definitions

above, we get

Nt = X0 +

bt/αc∑
i=1

(1 +Xi).

4.4 Basic properties

Lemma 4.3 (Monotonicity). Let (T ′i )i≥1 be a sequence of iid random variables satisfying

T ′i ≤ Ti a.s.

Then the renewal process N ′ define by N ′t =
∑∞

k=1 1T ′1+···+T ′k≤t satisfies

N ′t ≥ Nt a.s.

for every t ≥ 0.

Proof. Let k ≥ 1 and t ≥ 0. If T1 + · · ·+ Tk ≤ t then T ′1 + · · ·+ T ′k ≤ t a.s. Therefore,

1T1+···+Tk≤t ≤ 1T ′1+···+T ′k≤t a.s.

The results follows by summing the equation above over all k ≥ 1.
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Proposition 4.4 (Basic properties). The renewal process N satisfies the following proper-

ties. Almost surely,

(i) t 7→ Nt is non-decreasing, right continuous, with values in N and

(ii) limt→∞Nt =∞.

Proof.

(i) Write Q+ = Q ∩ (0,∞) for the positive rational numbers. We have

P [T1 > 0] = P
[ ⋃
α∈Q+

{T1 ≥ α}
]

= lim
α→0
α∈Q+

P[T1 ≥ α].

We have ∑
i>0

P [Ti ≥ α] =∞.

Therefore, by the Borel-Cantelli lemma, P [A] = 1, where

A = {ω : Ti(ω) ≥ α for infinitely many i} .

For every ω ∈ A, limn→∞ Sn(ω) =∞, and therefore

t 7→ Nt(ω) =
∑
k≥1

1Sk(ω)≤t

is a non-decreasing function with values in N.

(ii) All the inter-arrival times T1, T2, . . . are finite almost surely. Therefore, all the renewal

times S1, S2, . . . are finite almost surely. When this occurs, we have

lim
t→∞

Nt = lim
t→∞

∑
k≥1

1Sk≤t = +∞.

4.5 Exponential moments
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Proposition 4.5 (Exponential moments). There exists c > 0 such that

∀t ≥ 0 E
[
ecNt

]
≤ e

1+t
c

Proof. As in the proof of Proposition 4.4, we can pick α ∈ (0, 1] such that P [T1 ≥ α] > 0. For

every i > 0, define

T ′i = α1Ti≥α.

We have T ′i ≤ Ti a.s. and (T ′i ) are i.i.d. random variables with

T ′i =

{
α with probability β

0 with probability 1− β

where β = P [T1 ≥ α] > 0. Define the renewal process N ′ by

N ′t =
∑
k≥1

1T ′1+···+T ′k≤t.

By Proposition 4.2, we have that

N ′t =
(law)
= X0 +

b t
α
c∑

i=1

(1 +Xi),

where (Xi) are geometric random variables with success parameter β. For c > 0 such that

(1− β)ec < 1 we have

E[ec(1+Xi)] = ec
(

β

1− (1− β)ec

)
≤ e

α
c .

Hence, we can choose c > 0 small enough such that E[ec(1+Xi)] ≤ e
α
c . Using this bound and

independence we obtain for all t ≥ 0

E
[
ecN

′
t

]
≤
b t
α
c∏

i=0

E
[
ec(1+Xi)

]
≤ e

α
c

(1+ t
α

) = e
α+t
c .

This completes the proof since we chose α ≤ 1.

Remark 4.6. In particular, for every t ≥ 1, we have

E
[
ec

Nt
t

] (Jensen)

≤ E
[
ecNt

] 1
t ≤ e

2
c

and for every k ≥ 1

E

[(
Nt

t

)k]
≤ k!

ck
e

2
c . (4.2)
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4.6 Law of Large Numbers

Theorem 4.7 (Law of Large Numbers). Recall that µ = E [T1]. We have

lim
t→∞

Nt

t
=

1

µ
a.s.

Remark 4.8. If µ =∞, then limt→∞
Nt
t

= 0 a.s.

Proof. By the strong law of large numbers (for non negative random variable), we have

lim
n→∞

Sn+1

n+ 1
= lim

n→∞

Sn
n+ 1

= µ a.s.

Notice that for every t

SNt ≤ t ≤ SNt+1.

Therefore,

SNt
Nt + 1︸ ︷︷ ︸
→µ

≤ t

Nt + 1
<

SNt+1

Nt + 1︸ ︷︷ ︸
→µ

.

Where the convergences are almost sure. Therefore limt→∞
1+Nt
t

= 1
µ

a.s., which implies that

limt→∞
Nt
t

= 1
µ

a.s.

Theorem 4.9 (Central Limit Theorem). Assume that E [T 2
1 ] < ∞. Write µ = E [T1] , σ2 =

V ar(T1). Then, assuming σ > 0, we have

Nt − t
µ

σ
√

t
µ3

(law)−→
t→∞
N (0, 1)

Proof. See exercises.

4.7 Renewal function
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Definition 4.3. The renewal function is the function m : R+ → R+ defined by

∀t ≥ 0 m(t) = E[Nt].

Remark 4.10. Equation (4.2) applied to k = 1 implies that m(t) <∞ for every t ≥ 0.

Interpretation: The set {S1, S2, . . .} of renewal times defines a set of random points in R+,

and

m(t) = E [Number of points in the interval [0, t]] .

Remark 4.11. For the Poisson process with parameter λ, we know (by Proposition 4.1) that

Nt ∼ Pois(λt). Therefore, the renewal function is linear in this case:

∀t ≥ 0 m(t) = λt.

Proposition 4.12. The renewal function m is non-decreasing, non-negative, and right

continuous.

Proof. Since Nt is non-decreasing in t and non-negative almost surely, the expectation m(t) =

E[Nt] also satisfies these two properties. For the right continuity, observe that almost surely

Nt+s −Nt ↓ 0 as s ↓ 0. Therefore m(t+ s)−m(t)→ 0 by monotone convergence.

4.8 Elementary renewal theorem

Theorem 4.13 (Elementary Renewal Theorem).

lim
t→∞

m(t)

t
=

1

µ
.

Proof. We already have limt→∞
Nt
t

= 1
µ

a.s. (by Theorem 4.7). Furthermore, we have seen that

supt≥1 E
[(

Nt
t

)2
]
<∞. Hence Nt

t
is uniformly integrable and

lim
t→∞

m(t)

t
= lim

t→∞
E
[
Nt

t

]
= E

[
lim
t→∞

Nt

t

]
=

1

µ
.
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4.9 Lattice distributions

Definition 4.4. We say that F is lattice if there exists a > 0 and such that

P [T1 ∈ aZ] = 1. (4.3)

In this case the span of F is defined as the largest a > 0 such that (4.3) holds. Otherwise, we

say that F is non lattice.

4.10 Blackwell’s renewal theorem: lattice case

Theorem 4.14 (Blackwell’s Renewal Theorem). Assume that the law of T1 is lattice with

span a, then the sequence (m(ai))i∈N satisfies

lim
i→∞

m(a · i)−m(a · (i− 1)) =
a

µ
.

Proof. Via Markov Chains, see exercises.

4.11 Blackwell’s renewal theorem: non-lattice case

Theorem 4.15 (Blackwell’s Renewal Theorem). Assume that the law of T1 is non-lattice,

then for all h ≥ 0

lim
t→∞

m(t+ h)−m(t) =
h

µ
.

Proof. Admitted.

Remark 4.16. Blackwell’s theorem is “stronger” than elementary renewal theorem:

m(t)

t
≈ m(btc)
btc

=
1

btc

btc∑
k=1

m(k)−m(k − 1)
(Blackwell)→ 1

µ
.
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Chapter 5

Renewal Equation

Framework: (Ω,F ,P) probability space. In the whole chapter, we fix

T1, T2, . . . i.i.d. random variables on R+

satisfying P [T1 = 0] < 1. We write

µ = E [T1] ∈ (0,∞] and F (t) = P [T1 ≤ t] .

5.1 Lesbesgue-Stieltjes measure

Theorem 5.1. Let g be a right continuous non-decreasing function on R+. There exists a

unique measure νg on R+ such that

∀t ≥ 0 νg([0, t]) = g(t).

Proof. Admitted (follows from Caratheordory’s extension Theorem).

Notation Let g be a right continuous non-decreasing function on R+. For h ∈ L1(νg) or h

measurable and non-negative, write ∫
R+

h dg =

∫
R+

h dνg.

Example 1: F is a right continuous non-decreasing function on R+ and νF corresponds to the

law of T1: for every B ⊂ R+ measurable,

νF (B) = P[T1 ∈ B].
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Furthermore, for every h measurable bounded, we have∫
R+

h dF = E[h(T1)].

Example 2: Proposition 4.12 states that the renewal function m is right-continuous non-

decreasing. The corresponding measure νm has the following interpretation: for every B ⊂ R+

measurable,

νm(B) = E [Number of renewals in B] .

Furthermore, for every h measurable bounded, we have∫
R+

h dm = E
[∑
k≥1

h(Sn)

]
.

5.2 Convolution operator

Definition 5.1 (Convolution operator). Let G be a right continuous non-decreasing func-

tion on R+. Let h : R+ → R measurable be such that for all t ≥ 0
∫ t

0
|h(t− s)|dG(s) <∞

or h measurable non-negative. For every t ≥ 0, define

(h ∗G)(t) =

∫ t

0

h(t− s)dG(s).

Remark 5.2. If X, Y are two independent random variables on R+ with distribution functions

FX , FY respectively, then

FX+Y = FX ∗ FY .

The proof is left as an exercise.

This is useful in our context to express the distribution of the n-th renewal time Sn =

T1 + . . . Tn for n ≥ 1. Using the remark above and an induction, we can express the distribution

function of Sn as a n-fold convolution:

FSn = FT1+...+Tn = F ∗n,

where we write F ∗n = F ∗ . . . ∗ F︸ ︷︷ ︸
n times

.

This leads directly to the following expression of the renewal function.
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Proposition 5.3. For every t ≥ 0

m(t) =
∑
k≥1

F ∗k(t).

Proof. For every t ≥ 0 , we have

m(t) = E

[∑
n≥1

1Sn≤t

]
=
∑
n≥1

P [Sn ≤ t] =
∑
n≥1

F ∗n(t).

5.3 Renewal equation

Definition 5.2. Let h : R+ → R be measurable locally bounded (i.e. ∀t ≥ 0, h|[0,t] is

bounded). g : R+ → R such that for all t ≥ 0
∫ t

0
|g(t − s)|dF (s) < ∞. We say that g is a

solution of the (h, F ) renewal equation if

∀t ≥ 0 g(t) = h(t) +

∫ t

0

g(t− s)dF (s),

i.e. g = h+ g ∗ F .

Proposition 5.4. m is a solution of the (F, F ) renewal equation, ie. m = F +m ∗ F .

Proof 1.

m =
∑
i>0

F ∗i = F +
∑
i>1

F ∗(i−1) ∗ F monotone cv.
= F +

(∑
i>1

F ∗(i−1)

)
︸ ︷︷ ︸

m

∗F.
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Proof 2. For t ≥ 0, we have

m(t) = E

[∑
k>0

1T1+...+Tk≤t

]
= P [T1 ≤ t] + E

[∑
k>1

1T1+...+Tk≤t

]
︸ ︷︷ ︸

(?)

(?)
(Fubini)

=
∑
k>1

E [1T1+...+Tk≤t]
(Indep.)

=
∑
k>1

∫ t

0

E [1s+T2+...+Tk≤t] dF (s)

=

∫ t

0

m(t− s)dF (s).

5.4 Excess time

For t ≥ 0, define

Et = SNt+1 − t,

the time left to wait until next renewal.

Proposition 5.5 (Excess distribution function). Fix x ≥ 0. The function ex defined by

ex(t) = P [Et ≤ x] for all t ≥ 0 satisfies

ex = hx + ex ∗ F,

where hx(t) = F (x+ t)− F (t). (i.e. ex is a solution of the (hx, F ) renewal equation).

Proof. Fix x, t ≥ 0. We can separate ex(t) into two parts, one for the probability if there has

already been a renewal before time t, and one if that hasn’t occurred:

ex(t) = P [T1 > t,Et ≤ x] + P [T1 ≤ t, Et ≤ x] .

Now we analyze each term separately. The first term can be directly expressed as

P [T1 > t, T1 ≤ t+ x] = F (t+ x)− F (t).

For the second term, we exploit the renewal structure of the process. Observe that Et is

measurable with respect to (T1, T2, . . .): by definition, we have Et = φt(T1, T2, . . .), where

φt(t1, t2, . . .) =
∑
n≥0

1t1+···+tn≤t,t1+···+tn+1>t(t1 + · · ·+ tn+1 − t).
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Notice that for every s ≤ t, φt(s, t2, . . .) = φt−s(t2, . . .). Using this observation, we find

P [T1 ≤ t, Et ≤ x] =P [T1 ≤ t, φt(T1, T2, . . .) ≤ x]

=

∫ t

0

P [φt(s, T2, . . .) ≤ x] dF (s)

=

∫ t

0

P [φt−s(T2, . . .) ≤ x] dF (s)

=

∫ t

0

ex(t− s)dF (s) = (ex ∗ F )(t)

Thus ex(t) = hx(t) + (ex ∗ F )(t).

5.5 Well-Posedness of the Renewal Equation

Theorem 5.6. Let h : R+ → R be measurable, locally bounded. Then there exists a unique

g : R+ → R measurable, locally bounded, solution of

g = h+ g ∗ F,

given by g = h+ h ∗m.

Intuitive Proof. Assume g is a solution, then we have

g =h+ g ∗ F
=h+ (h+ g ∗ F ) ∗ F
...

(∗)
=h+ h ∗ F + h ∗ F ∗2 + h ∗ F ∗3 + . . .

=h+ h ∗m

Rigorous Proof. Existence g = h+h∗m is measurable and locally bounded, because h is. We

have

h+ g ∗ F = h+ (h+ h ∗m) ∗ F
= h+ h ∗ (F +m ∗ F )︸ ︷︷ ︸

=m

= g.
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Uniqueness Let g1, g2 be two solutions of the (h, F ) renewal equation. Then g1 − g2 =

(g1 − g2) ∗ F and therefore, by induction, g1 − g2 = (g1 − g2) ∗ F ∗n for every n ≥ 1 . Fix t ≥ 0.

For every n ≥ 1, we have

|g1(t)− g2(t)| =
∣∣∣∣∫ t

0

(g1 − g2)(t− s)dF ∗n(s)

∣∣∣∣ ≤ sup
[0,t]

|g1 − g2|
∫ t

0

dF ∗n(s).

Where we can see the integral term is equal to P [T1 + . . .+ Tn ≤ t] which converges to 0 as n

tends to infinity. Hence g1 = g2.

5.6 Discussion about the asymptotic Behavior

From now and until the end of the chapter, we assume that F is non-lattice.

Question: Let g be the solution of the (h, F ) renewal equation, what is the asymptotic behavior

of g(t) for t→∞?

A first answer: We start by considering the case h = 1[a,b] for 0 ≤ a ≤ b. Let g = h + h ∗m
be the solution of the (h, F ) renewal equation. For every t > b, we have h(t) = 0, hence

g(t) =

∫ t

0

h(t− s)dm(s)

=

∫ t−a

t−b
h(s)dm(s)

= m(t− a)−m(t− b)︸ ︷︷ ︸
(Blackwell)→ b−a

µ

.

Hence

lim
t→∞

g(t) =
1

µ

∫ ∞
0

h(s)ds.

How does this generalize?

Idea: Extend to simple functions
∑
λi1[ai,bi] (this is straightforward), and then to a more

general class of measurable functions. A good framework for this extension is to consider

directly Riemann integrable functions.

5.7 Directly Rieman integrable functions
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Figure 5.1: An integrable function which is not dRi.

Definition 5.3. h : R+ → R+ measurable, h is called directly Riemann Integrable (dRi) if

∀δ > 0
∞∑
k=0

δ sup
[kδ,(k+1)δ]

h <∞.

and

lim
δ→0

δ
∞∑
k=0

sup
[kδ,(k+1)δ]

h = lim
δ→0

δ
∞∑
k=0

inf
[kδ,(k+1)δ]

h.

h : R+ → R is dRi if and only if h+ = max(h, 0) and h− = max(−h, 0) are dRi.

Remark 5.7. If h is dRi, then it is integrable. The converse is not true: The function h =∑
k>0 1[k,k+2−k] is integrable, but is not dRi.

Proposition 5.8. Let h : R+ → R+ be measurable.

Assume that h is continuous at a.e. t ∈ R and there exists H non-increasing such that

0 ≤ h ≤ H and
∫∞

0
H <∞. Then h is dRi.

Proof. See Prop. 4.1 in [1].

Remark 5.9. In particular if h is bounded, continuous at a.e. t ∈ R, and vanishes outside a

compact set, then h is dRi.
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5.8 Smith key renewal theorem

Theorem 5.10 (Smith Key Renewal Theorem). Let h be dRi, F non-lattice. Then g =

h+ h ∗m satisfies

lim
t→∞

g(t) =
1

µ

∫ ∞
0

h(u)du.

Remark 5.11. The case h = 1[0,b] corresponds to the Blackwell Theorem.

Proof. Since h is dRi we have ∑
k

sup
[k,k+1]

|h| <∞.

Hence h(t)→ 0. Therefore it suffices to prove

lim
t→∞

∫ t

0

h(t− s)dm(s) =
1

µ

∫ t

0

h(u)du.

Let δ > 0 such that F (δ) < 1.

Assume h =
∑

k≥0 ck1[kδ,(k+1)δ) with ck ≥ 0 and
∑

k≥0 ck <∞. By monotone convergence

h(t− s)dm(s) =
∑
k≥0

ck[m(t− kδ)−m(t− kδ − δ)]︸ ︷︷ ︸
hk(t)

.

Observe that for every u ≥ δ

1 ≥ F (u) = m(u)−
∫ u

0

F (u− s)dm(s) =

∫ u

0

(1− F (u− s))dm(s)

≥
∫ u

u−δ
(1− F (u− s)︸ ︷︷ ︸

≥1−F (δ)

)dm(s) ≥ (1− F (δ)) (m(u)−m(u− δ)) .

In the first equality, it was used that m is the solution of the (F, F ) renewal equation. Hence

for every t and every k

hk(t) ≤
ck

1− F (δ)
,
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by distinguishing between t − kδ ≥ δ and t − kδ < δ, and using that m is non-decreasing,

vanishing on (−∞, 0). By dominated convergence

lim
t→∞

∑
k≥0

hk(t) =
∑
k≥0

lim
t→∞

hk(t)︸ ︷︷ ︸
(Blackwell)

= ck
δ
µ

.

Hence limt→∞
∫ t

0
h(t− s)dm(s) =

∑∞
k=0 ck

δ
µ

= 1
µ

∫∞
0
h(u)du.

Now assume h ≥ 0 dRi. Let δ > 0 such that F (δ) < 1. Write

hδ =
∑
k≥0

( inf
[kδ,(k+1)δ]

h)1[kδ,(k+1)δ)

hδ =
∑
k≥0

( sup
[kδ,(k+1)δ]

h)1[kδ,(k+1)δ).

We have for every t∫ t

0

h(t− s)dm(s) ≤
∫ t

0

hδ(t− s)dm(s)→ 1

µ

∫ t

0

hδ(u)du.

Hence

lim sup
t→∞

∫ t

0

h(t− s)dm(s) ≤ 1

µ

∫
R
hδ(u)du.

Since ∣∣∣∣∫
R
hδ(u)du−

∫
R
h(u)du

∣∣∣∣ ≤∑
k≥0

δ
(
hδ(kδ)− hδ(kδ)

) δ→0−→ 0,

where the limit is due to h being dRi. We can let δ tend to 0 in the equation above (with

lim sup) to obtain

lim sup
t→∞

∫ t

0

h(t− s)dm(s) ≤ 1

µ

∫
R
h(u)du,

and equivalently

lim inf
t→∞

∫ t

0

h(t− s)dm(s) ≥ 1

µ

∫
R
h(u)du.

1

µ

∫
R
h(u)du ≤ lim inf

t→∞

∫ t

0

h(t− s)dm(s) ≤ lim sup
t→∞

∫ t

0

h(t− s)dm(s) ≤ 1

µ

∫
R
h(u)du.
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5.9 Application to the excess time

Assume that µ <∞. Let Et be the excess time (time until next renewal) and ex(t) = P [Et ≤ x].

What is limt→∞ ex(t)? We know that ex = hx + ex ∗ F , where hx(t) = F (t+ x)− F (t).

Remark 5.12. µ = E [T1] =
∫∞

0
P [T1 > t] dt

With this we have that hx(t) ≤ 1 − F (t) = P [T1 > t], and 1 − F (t) is non-increasing in t and

continuous a.e. (because it is the difference of two monotone functions).∫ ∞
0

P [T1 > t] dt = E [T1] = µ <∞.

Thus (by the proposition) hx is dRi. Now we can apply the theorem and get that

lim
t→∞

P [Et ≤ x] =
1

µ

∫ ∞
0

hx(t)dt =
1

µ

∫ ∞
0

F (t+ x)− F (t)dt,

with F (t+ x)− F (t) = E
[
1T1∈(t,t+x]

]
, we find that the limit is equal to

1

µ

∫ ∞
0

E
[
1T1∈(t,t+x]

]
dt =

1

µ
E
[∫ ∞

0

1t∈[T1−x,T1)

]
dt =

1

µ
E
[∫ T1

max{T1−x,0}
dt

]
=

{
T1, T1 ≤ x

x, T1 > x.

Thus for t large: P [Et ≤ x] ≈ 1
µ
E [min{T1, x}].

Remark 5.13. G(x) = 1
µ
E [min{T1, x}] is the delay distribution in the proof of Blackwell’s

Theorem.



Chapter 6

General Poisson Point Processes

Reference Lectures on the Poisson Process (Penrose), Poisson Processes (Kingman)

Framework:

• (Ω,FΩ,P) probability space.

• (E, d) a Polish space (separable, complete, metric space).

• E Borel σ-algebra of E.

• µ sigma-finite measure on (E, E), i.e. there exists a partition

E =
⋃
i∈N

Ei,

such that each Ei is measurable and satisfies µ(Ei) <∞.

Examples:

(i) E = {0}, µ = δ0.

(ii) E = R+, µ = λ · LebR+ “Lebesgue Measure on R+.

(iii) E = R2, µ(dx) = 1
π
e−|x|

2
dx ’Gaussian’

Goal: We wish to define a random set of points on (E, E) where

”number of points around x” ≈ µ(dx).

In particular we wish to define a random variable: Ω →’set of points in a general state space

E’ (ex: R2, [0, 1]2, a manifold, Z, a space of function,etc...)

61
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6.1 Representing Points?

First question How can we represent points on E = R+ mathematically?

(i) ’Time point of view’, ie T1, T2, . . . where Ti = time between the (i− 1)’th and i’th point.

(ii) Cadlag formulation with values in N. Nt = number of points in [0, t].

(iii) A set of points S = {S1, S2, . . .}

(iv) Measure M : B(R+)→ N with M(A) = number of points in A.

(i) and (ii) are specific to R+ and to not extend to general space. (iii) and (iv) are both

possible. We will prefer (iv) because it allows us to deal with multiplicity.

Notation We consider the measurable space (M,B(M)), where

M = {sigma-finite measures η on E such that ∀B ∈ E η(B) ∈ N ∪ {+∞}} ,

and B(M) is the σ-algebra generated by the sets

{η ∈M : η(B) = k}

for B ⊂ E measurable and k ∈ N.

Proposition 6.1 (Representation as Dirac Sum). Let M<∞ = {η ∈ M : η(E) < ∞},
there exist measurable maps τ :M<∞ → N and Xi :M<∞ → E such that

∀η ∈M<∞ η =

τ(η)∑
i=0

δXi(η).

Remark 6.2. Thus η corresponds to a collection of points {X1, . . . , Xτ}.

Notation: For every k ≥ 0 we write Mk for the set of measures η ∈ M with total mass

η(E) = k.

Lemma 6.3. Let k ≥ 1. There exists a measurable map Z :Mk → E such that

∀η ∈Mk η({Z}) ≥ 1.
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Proof. Fix k ≥ 1 and Y = {y1, y2, . . .} at most countable and dense in E. We will construct by

induction Y1, Y2, . . . some measurable maps from Mk to Y such that for every n ≥ 1

η

( ⋂
1≤m≤n

B(Ym(η),
1

m
)

)
≥ 1,

for every η ∈Mk.

Construction of Y1: Since the set Y is dense in E, we have E =
⋃
i>0B(yi, 1). Therefore,

for every η ∈ Mk, by the union bound we have 1 ≤ η(E) ≤
∑

i≥1 η(B(yi, 1)). We can thus

define

Y1(η) = yi1 where i1 = min{i : η(B(yi, 1)) ≥ 1}.

This define a map Y1 :Mk → Y , which is measurable because for every j

Y −1
1 ({yj}) =

⋂
i<j

{η : η(B(yi, 1)) = 0} ∩ {η : η(B(yi, 1)) = 1}.

Construction of Yn: Let n ≥ 1 and assume that Y1, . . . , Yn−1 have already been constructed.

Let η ∈Mk and C =
⋂

1≤m≤n−1 B(Ym(η), 1
m

). We have

1 ≤ η(C) ≤
∑
i>0

η

(
C ∩ B

(
yi,

1

n

))
.

Define Yn(η) = yin where in = min{i : η(C ∩ B(yi,
1
n
)) ≥ 1}. As above, Yn is measurable.

The sequence (Yn)n≥0 constructed above is a Cauchy sequence (indeed for every n ≥ m

B(Yn,
1
n
) ∩ B(Ym,

1
m

) 6= ∅, hence by the triangle inequality d(Yn, Ym) ≤ 2
m

). Define Zk+1(η) =

limn→∞ Yn(η) (Zk1 is measurable as a simple limit of measurable functions). Furthermore

{Zk+1(η)} =
⋂
n>0B(Yn,

2
n
) and therefore η({Zk+1(η)}) ≥ 1.

Proof of Proposition 6.1. We have M<∞ =
⋃∞
k=0Mk where Mk = {η : η(E) = k}. We prove

by induction on k ≥ 0 that for every k ≥ 0 there exist Z1, . . . , Zk : Mk → E measurable such

that

∀η ∈Mk η =
k∑
i=1

δZi .

For k = 0 there is nothing to prove. Let k ≥ 0 and assume that the property holds. Let η ∈M
such that η(E) = k + 1. By Lemma 6.3, there exists Zk+1 :Mk+1 → E measurable such that

η(Zk+1(η)) ≥ 1. Define

η′ = η − δZk+1(η)
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(η′ is measurable in η). Note that η′(E) = k, and therefore η′ ∈Mk. By induction, there exist

Z ′1(η′), . . . , Z ′k(η
′) such that η′ = δZ′1 + . . .+ δZ′k . Setting Zi(η) := Z ′i(η

′) for i ≤ k, we obtain

η =
k+1∑
i=1

δZi(η).

6.2 Point process

Definition 6.1. A point process on (E, E) is a stochastic process

M = (M(B))B∈E

with values in N ∪ {∞}, such that M ∈M a.s.

Interpretation: For fixed B, the random integer M(B) intuitively represents the number of

points in B. A point process indicates how many points there are in each region B of the

space. The condition M ∈ M a.s. ensures that all the numbers of points in different regions

are compatible with each other.

Remark 6.4. In the definition above, we make a slight abuse of notation and also write M for

the random mapping M : B 7→M(B).

As usual in probability, the underlying parameter ω ∈ Ω is implicit. Formally, a point

process is a collection M = (Mω(B))ω∈Ω,B∈E with values in N ∪ {∞} such that

• for every fixed B, ω 7→Mω(B) is measurable.

• for almost every ω ∈ Ω, the mapping Mω : B 7→Mω(B) is an element of M.

Remark 6.5. One can check that the definition above is equivalent to saying that the mapping

ω 7→Mω is a random variable with values in M.

Examples of Point Processes

• M = 0 a.s. (This corresponds to the random set S = ∅ a.s.)

• E = [0, 1], X random variable on [0, 1]. M = δX is a point process. (This corresponds to

the random set S = {X} a.s.)

• X1, . . . Xn i.i.d. random variable on [0, 1], N = δX1 + . . . + δXn is a point process. (This

corresponds to the random set S = {X1, . . . , Xn} a.s.)
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6.3 Poisson Point Processes

Convention X ∼ Pois(∞) if and only if X =∞ a.s.

Definition 6.2. A Poisson point process with intensity µ on (E, E) (ppp(µ)) is a point

process M such that

(i) For all B1, . . . , Bk ⊂ E measurable and disjoint, M(B1), . . . ,M(Bk) are independent.

(ii) For all B ⊂ E measurable, M(B) has law Pois(µ(B)).

Remark 6.6. Let B ⊂ E measurable. Item (ii) includes the case µ(B) =∞: it is equivalent to

µ(B)

{
∼ Pois(µ(B)) if µ(B) <∞,

= +∞ a.s. if µ(B) =∞.

In particular, by applying the definition to B = E, we obtain that the total number of points

in the space τ := M(E) is a Poisson random variable with parameter µ(E): we have

τ

{
<∞ a.s. if µ(E) <∞,

= +∞ a.s. if µ(E) =∞.

Remark 6.7. Thanks to Item (ii), we can calculate the average number of points in a region.

For every B ⊂ E measurable, we have

E [M(B)] = µ(B) ,

(on average, there are µ(B) points in B).

6.4 Representation as a proper process

Theorem 6.8. Let M be a ppp(µ) on (E, E). Let τ = M(E) (the total number of points

in E). There exist some random variables Xn ∈ E, n > 0 such that

M =
τ∑

n=1

δXn a.s.
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Remark 6.9. The theorem gives a “random set” interpretation of Poisson process. We have a

correspondence:

M ∈M rand. counting measure ←→ S = {X1, . . . , Xτ} random set

M(B) ←→ |S ∩B|, number of points in B (with multiplicity).

Proof of Theorem 6.8. Let (Ei)i∈N be a partition of E such that µ(Ei) < ∞ for every i. The

process Mi := M( · ∩Ei) takes values inM<∞. Hence the proposition in the previous section

ensures that there exist some random variables τ (i), Z
(i)
1 , . . . , Z

(i)
τ such that

Mi =
τ (i)∑
j=1

δ
Z

(i)
j

a.s.

Use that M =
∑∞

i=1Mi, and a reordering of the terms in the sums, we obtain the desired

result.

Question Does there always exist a ppp(µ) on E?

6.5 Existence: Spaces with finite measure

Assume µ(E) <∞.

Proposition 6.10. Let Z, (Xi)i≥1 be independent random variables.

Z ∼ Pois(µ(E)), Xi ∼
µ( · )

µ(E)
.

Then M =
∑Z

i=1 δXi is a ppp(µ) on E.

Proof. Let k ≥ 2 and B1, . . . Bk−1 ⊂ E be disjoint and measurable. Set Bk = E \
(⋂k

i=1Bi

)
.

Fix n1, . . . , nk ∈ N arbitrary. Set n = n1 + . . .+ nk, and define for each i ∈ {1, . . . , k},

Yi =
n∑
j=1

1Xj∈Bi



6.6. SUPERPOSITION 67

Observe that (Y1, . . . , Yk) is a multinomial random variable with parameters (n; µ(B1)
µ(E)

, . . . , µ(Bk)
µ(E)

)

independent of Z. We have

P [M(B1) = n1, . . . ,M(Bk) = nk] = P [Z = n, Y1 = n1, . . . , Yk = nk]

=
µ(E)n

n!
e−µ(E) · n!

n1! · · ·nk!

(
µ(B1)

µ(E)

)n1

· · ·
(
µ(Bk)

µ(E)

)nk
=

k∏
i=1

µ(Bi)
ni

ni!
e−µ(Bi).

By summing over all nk, we get

P [M(B1) = n1, . . . ,M(Bk−1) = nk−1] =
k−1∏
i=1

µ(Bi)
ni

ni!
e−µ(Bi).

Hence M(B1), . . . ,M(Bk−1) are independent Pois(µ(Bi)) random variables.

6.6 Superposition

Lemma 6.11. Let λ =
∑∞

i=1 λi, λi ≥ 0. (Xi)i>0 independent random variables with

Xi ∼ Poiss(λi) for every i ≥ 1. Then the sum X =
∑∞

i=1Xi is a Poiss(λ) random variable.

Proof. See Exercises.

Theorem 6.12. Let Mi, i ≥ 1 be a sequence of independent ppp(µi) where µi and µ =∑∞
i=1 µi are sigma-finite measures. Then M =

∑∞
i=1 Mi is a ppp(µ).

Proof. We first check that M is a point process. For every B ⊂ E measurable, M(B) =∑
iMi(B) is a well defined random variable (as a sum of nonnegative random variables). M is

a measure almost surely (as a sum of of measures). Let (En)n∈N be a partition of E such that

µ(En) <∞ for every i. For all n,

E[M(En)] =
∞∑
i=1

E[Mi(En)] =
∞∑
i=1

µi(En) = µ(En) <∞.

Hence M(En) < ∞ a.s. for every n ∈ N, which implies that M is a σ-finite measure almost

surely.
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For B ⊂ E measurable,

M(B) =
∑
i

Mi(B)
(d)
=
∑
i

Pois(µi(Bn)).

By the lemma, M(B) is a Pois(µ(B)) random variable. Finally for B1, . . . , Bk ⊂ E measurable

and disjoint (Mi(Bj))i∈N,1≤j≤k are independent random variables. Therefore

M(Bi) =
∑
i

Mi(B1), . . . ,M(Bk) =
∑
i

Mi(Bk)

are independent by grouping.

Theorem 6.13. Assume that µ is a sigma-finite measure on (E, E), then there exists a

ppp(µ) on E.

Proof. µ =
∑∞

i=1 µi where µi(E) < ∞. Let (Mi) be independent Poisson processes, where Mi

is a ppp(µi). By superposition, M =
∑∞

i=1Mi is a ppp(µ).

6.7 Law of the Poisson process

Let M be a ppp(µ) on E, its law PM is a probability measure on M.

Proposition 6.14. Let M,M ′ be two ppp(µ) on (E, E) then PM = PM ′.

Remark 6.15. PM = PM ′ if and only if for all A ⊂M measurable PM(A) = PM ′(A) if and only

if for all A ⊂M measurable P [M ∈ A] = P [M ′ ∈ A].

Proof. Let B1, B2 ⊂ E measurable, n1, n2 ≥ 0. Define C1 = B1 \ B2, C2 = B1 ∩ B2, and

C3 = B2 \B1.

P [M(B1) = n1,M(B2) = n2] =
∑

m1+m2=n1
m2+m3=n2

P [M(C1) = n1,M(C2) = m2,M(C3) = m3]

=
∑

m1+m2=n1
m2+m3=n2

P [M ′(C1) = m1,M
′(C2) = m2,M

′(C3) = m3]

= P [M ′(B1) = n1,M
′(B2) = n2]
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B1 B2

C1 C2 C3

Where the second equality holds as the Ci are disjoint. Equivalently, for all B1, . . . , Bk ⊂ E

measurable

P [M(B1) = n1, . . . ,M(Bk) = nk] = P [M ′(B1) = n1, . . . ,M
′(Bk) = nk] .

Therefore PM(A)
(∗)
= PM ′(A) for every set of the form A = {η : (η(B1), . . . , η(Bk)) ∈ K} for

B1, . . . , Bk ⊂ E measurable and K ⊂ Nk. Such sets for a π-system and generate B(M). Hence,

by Dynkin’s lemma, (∗) holds for every measurable set A ⊂M measurable.

6.8 Restriction

Notation If ν is a measure on E, C ⊂ E measurable, then we write νC := ν(· ∩ C) (the

measure restricted to C).

Theorem 6.16 (Restriction). Let C1, C2, . . . ⊂ E measurable and disjoint. If N is a ppp(µ)

on E, then NC1 , NC2 . . . are independent ppp with respective intensities µC1 , µC2 , . . .

Proof. Let C0 = E \ (∪i≥1Ci) (possibly empty). This, way we have a partition E =
⋃
i≥0Ci

Let N ′0, N
′
1, . . . independent ppp with respective intensities µC0 , µC1 , . . .. By superposition N ′ =∑

i≥0N
′
i is a ppp(µ) (indeed, µ =

∑
i≥0 µCi).

For every B ⊂ E measurable and j ≥ 0

N ′(B ∩ Cj) =
∑
i>0

N ′i(B ∩ Cj)︸ ︷︷ ︸
=0 a.s. if i 6=j

= N ′j(B) a.s.
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Hence N ′Cj = N ′j a.s. Let f1, . . . , fk :M→ R+ measurable.

E

[
k∏
i=1

fi(NCi)

]
(uniqueness)

= E

[
k∏
i=1

fi(N
′
Ci

)

]
= E

[
k∏
i=1

fi(N
′
i)

]
=

k∏
i=1

E [fi(N
′
i)] .

Hence NC1 , . . . , NCk are independent ppp(µCi).

6.9 Mapping

Let (F,F) be Polish space equipped with its Borel σ-algebra. We consider a measurable map

T : E → F.

Given a measure ν on E, we write T#ν for the pushforward measure of ν under T (defined by

T#ν(B) = ν(T−1(B)) for every B ∈ E).

Theorem 6.17. Assume that T#µ is sigma-finite. Let M be a ppp(µ) on E. The process

T#M = (M(T−1(B))B∈F

is a ppp(T#µ) on F .

Proof. We first show that T#M is a point process on F . For every fixed B ∈ F , we have

T−1(B) ∈ E (because T is measurable). Therefore, T#M(B) = M(T−1(B)) is a well defined

random variable. Let M′ be the space of sigma-finite measures on (F,F) taking values in

N ∪ {∞}. Notice that η ∈ M =⇒ T#η ∈ M′. Since M ∈ M almost surely, we also have

T#M ∈M′ almost surely.

Let B ∈ F . By definition, we have

T#M(B) = M
(
T−1(B)

)
∼ Poisson(µ(T−1(B)) = Poisson(T#µ(B)).

Let B1, . . . , Bk be disjoint sets in F . Then, their pre-images T−1(B1), . . . , T−1(Bk) are

disjoint measurable sets in E . The independence of the random variables

T#M(B1) = M(T−1(B1)), . . . , T#M(Bk) = M(T−1(Bk))

arises from the fact that M is a Poisson point process. As before, we have that T#M(B1) =

M(T−1(B1)) ∼ Poisson(µ(T−1(B1)) = Poisson(T#µ(B1)), and the statement follows.

Remark 6.18. If we decompose M =
∑τ

i=1 δXi (as in Theorem 6.8), then T#M can be written

as T#M =
∑τ

i=1 δT (Xi). Namely if the process M correspond to the point X1, X2, . . . then the

process T#M corresponds to the image of these points T (X1), T (X2) . . .

Example 6.1. E = R, F = Z, T : E → F ;x→ bxc, µ = L, T#µ = | · |.
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6.10 Marking

Motivation Cars on a highway, at time 0 the position of the cars is a ppp(1) on R (that means

on average 1 car per kilometer of highway). We put an observer (Olga) at 0 on R.

Case 1: All of the cars have speed 50km/h, we want to study X = number of cars seen by

Olga in 1 hour. What is the law of X? X ∼ Pois(50).

Case 2: The cars have a random speed ∼ U([50, 100]). What is the law of X? It may at

first seem complicated, but it is not!

Framework Let (F,F , ν) Polish, probability space (’space of marks’).

Definition 6.3. Let M =
∑τ

i=1 δXi be a ppp(µ) on E. (Yi)i>0 i.i.d. random variable with

law ν independent of M . The Y -marked point process associated to M is the point process

on E × F defined by

M =
τ∑
i=1

δ(Xi,Yi).

Remark 6.19. Xi corresponds to the position of the cars in Case 2, and Yi to their speeds.

Theorem 6.20. The marked process M is a ppp(µ⊗ ν).

Proof. See Section 6.13.

6.11 Thinning

Theorem 6.21. Let p ∈ [0, 1]. Let M =
∑τ

i=1 δXi be a ppp(µ) on E. Let (Zi)i≥1 be

an infinite sequence of iid Bernoulli random variables with parameter p. The two point

processes

M0 =
∑
i≥1
Zi=0

δXi and M1 =
∑
i≥1
Xi=1

δXi

are two independent ppp with intensities (1− p)µ and pµ respectively.
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Proof. The point process on E × {0, 1} defined by

M =
∑
i≥1

δ(Xi,Zi).

is Ber(p)-marking of M . Hence by Theorem 6.20, M is a ppp(µ ⊗ Ber(p)) on E × {0, 1}. By

restriction, the two processes M |E×{0} and M |E×{1}, are independent processes with intensities

(µ ⊗ Ber(p))|E×{0} and (µ ⊗ Ber(p))|E×{1} respectively. This concludes the proof since Mj is

the projection o f M |E×{j} on the coordinate j.

6.12 Laplace Functional

Lemma 6.22. Let X be a Pois(λ) random variable, for λ > 0, then for all u ≥ 0

E
[
e−uX

]
= exp(−λ(1− e−u)).

Proof. For every u ≥ 0 we have

E
[
e−uX

]
=
∑
k

λk

k!
e−λe−ku = e−λ exp(λe−u).

Definition 6.4. Let M be a point process on (E, E), for every u : E → R+ measurable define

LM(u) = E
[
exp(−

∫
u(x)M(dx)

]
.

Remark 6.23. LM(u) is well defined. Indeed
∫
E
u(x)M(dx) =

∫
E
udN is a well defined random

variable.

We can interpret
∫
u(x)M(dx) as

∑
x ’points of N’ u(x) with multiplicities counted.

Theorem 6.24 (Characterization via Laplace Functional). Let µ be a sigma-finite measure

on (E, E). Let M be a point process on E. The following are equivalent

(i) M is a ppp(µ),

(ii) For all u : E → R+ measurable

LM(u) = exp

(
−
∫
E

1− e−u(x)µ(dx)

)
.
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Proof. =⇒ Let u =
∑k

i=1 ui1Bi for B1, . . . , Bk disjoint, ui ≥ 0.

LM(u) = E

[
exp

(
−

k∑
i=1

uiM(Bi)

)]
(indep.)

=
k∏
i=1

E
[
euiM(Bi)

]
=

k∏
i=1

exp
(
−µ(Bi)(1− e−ui)

)
= exp

(
−
∫
E

1− e−u(x)µ(dx)

)
.

For general u ≥ 0, consider (un) of the form above such that un ↑ u. For every n

LM(un)︸ ︷︷ ︸
(MCT)→ LM (u)

= exp

(
−
∫
E

(1− e−un(x))µ(dx)

)
︸ ︷︷ ︸

→exp(−
∫
E(1−e−u(x))µ(dx))

.

⇐= Let B1, . . . , Bk be disjoint. For all x = (x1, . . . , xk) with xi ≥ 0. By applying (ii) to

u =
∑k

i=1 xi1Bi , we have

E
[
e−x·(M(B1),...,M(Bk))

]
= LN(u)

= exp

(
−
∫
E

1− e−u(x)µ(dx)

)
=

k∏
i=1

exp
(
−µ(Bi)(1− e−xi

)
= E

[
e−x·Y

]
,

where Y = (Y1, . . . , Yk) is a random vector of independent variables. Furthermore Yi are

Pois(µ(Bi)) random variables, since the Laplace transform characterizes the law we have

(M(B1), . . . ,M(Bk))
(law)
= Y.

6.13 Proof of the marking Theorem

First we show that M is a point process. For every B ⊂ E measurable,

M(B) =
τ∑
i=1

1(Xi,Yi)∈B︸ ︷︷ ︸
measurable

.
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Let u : E × F → R+ measurable

LM(u) =
∑

m∈N∪{∞}

E

[
1τ=m exp

(
−

m∑
k=1

u(Xk, Yk)

)]
︸ ︷︷ ︸

f(m)

.

For m <∞, we have

f(m) =

∫
F

. . .

∫
F

E

[
1τ=m exp

(
−

m∑
k=1

u(Xk, yk)

)]
ν(dy1) . . . ν(dyk)

= E

1τ=m

m∏
k=1

(∫
F

e−u(Xk,yk)

)
︸ ︷︷ ︸

e−v(Xk)


where v(x) = − log

(∫
F
e−u(x,y)ν(dy)

)
≥ 0. Hence for all m <∞, we have

f(m) = E

[
1τ=m exp

(
−

m∑
k=1

v(xk)

)]
.

Equivalently and using monotone convergence, the equality above also holds for m = ∞.

Therefore

LM(u) =
∑

m∈N∪{∞}

E

[
1τ=m exp

(
−

m∑
k=1

v(Xk)

)]
= E

[
exp

(
−

τ∑
k=1

v(Xk)

)]

= LM(v) = exp

(
−
∫
E

1− e−v(x)µ(dx)

)
= exp

(
−
∫
E

[
1−

∫
F

e−u(x,y)ν(dy)

]
µ(dx)

)
= exp

(
−
∫
E×F

1− e−u(x,y)ν(dy)µ(dx)

)
.

Hence M is a ppp(µ⊗ ν).



Chapter 7

Standard Poisson Process

Framework (Ω,F ,P) probability space, time space: R+ = [0,∞).

7.1 Counting processes

Definition 7.1. Let N = (Nt)t≥0 be a continuous time stochastic process with values in

R. We say that N is a counting proces if the following holds a.s.

(i) N0 = 0,

(ii) t 7→ Nt is non-decreasing, right continuous, with values in N.

In this case we can define the successive jump times by induction:

S1 = min{t : Nt > 0},
Si+1 = min{t ≥ Si : Nt > NSi} for i > 0.

We also define the inter-jump times by

T1 = S1, T2 = S2 − S1, T3 = S3 − S2, . . .

7.2 Exponential Random Variables

In this section, we recall the definition of an exponential random variable, and compute the

density of a vecor constructed from exponential random variables.

75
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Definition 7.2. Let λ > 0, a real random variable T is exponential with parameter λ (we

write T ∼ Exp(λ)) if it has density

f(t) = λe−λt1{t≥0}.

Proposition 7.1. Let λ > 0. Let T1, . . . , Tk be k real random variables, and consider

Si = T1 + · · ·+ Ti for every i. The following are equivalent:

(i) T1, . . . , Tk are iid exponential with parameter λ.

(ii) The random vector (S1, . . . , Sk) has density f(x1, . . . , xk) = λke−λxk1x1<x2<···<xk with

respect to Lebesgue measure on Rk.

Proof. (ii) =⇒ (i) Define the map h(t1, . . . , tk) = (t1, t1 + t2, . . . , t1 + . . .+ tk). This way we

have (T1, . . . , Tk) = h−1((S1, . . . , Sk)). By change of variables (and using that the Jacobian of

h is 1), (T1, . . . , Tk) admits the density

(f ◦ h)(t1, . . . , tk) = λke−λ(t1+...+tk)
1t1<...<t1+...+tk =

k∏
i=1

λe−λti1ti>0,

which establishes that T1, . . . , Tk are i.i.d. Exp(λ) random variables.

(i) =⇒ (ii) As above, the proof follows from the change of variable formula, this time applied

to the map k defined by k(x1, . . . , xk) = (x1, x2 − x1, . . . , xk − xk−1).

7.3 Poisson process

The Poisson process appears as a fundamental process to count a number of events occuring

in times: a typical example is the number of customer arriving in a shop. Let us say that a

shop opens at time 0, and we want to describe mathematically the arrival times of customers.

There are tw different ways to decribe the situation:

temporal view point At time 0, there is no customer, we wait a certain time T1 until the

first customer arrives, then we wait a certain time T2 between the first customer and the

second customer, and so on. This defines a sequence of times T1, T2, · · · , where T1+· · ·+Ti
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corresponds to the arrival of the i-th customer. At time t, the number of customers in

the shop is given by

Nt =
∑
i≥1

1T1+···+Ti≤t.

spatial view point Let Si be the arrival time of the customer i. One can visualize the set

S = {S1, S2, . . .} as a random subset of point of R+. Writing M(B) for the number of

points in a subset B ⊂ R+, the total number of customers arriving before time t is equal

to

Nt = M([0, t])

and corresponds to the number of point in the interval [0, t].

For the definition, we use the temporal view point: a Poisson process is a renewal process

with exponential inter-arrival times. In the next section, we show that this is equivalent to a

spatial view point: a Poisson process also counts the number of points in [0, t] in a Poisson

point process with intensity λLeb on R+.

Definition 7.3. Let λ > 0. Let N be a counting process. We say that N is a Poisson pro-

cess if it has jumps of size 1 (i.e. for all t lim suph→0Nt−Nt−h ≤ 1 a.s.) and its inter-jump

times T1, T2, . . . are iid with

Ti ∼ Exp(λ)

for every i ≥ 1.

7.4 Temporal vs spatial viewpoints

Theorem 7.2. Let N be a counting process with jump times S1, S2 . . ., and consider the

counting measure M =
∑

i≥1 δSi. The following are equivalent

(i) N is a pp(λ),

(ii) M is a ppp(λLeb) on R+,

(iii) ∀k ≥ 1, ∀0 = t0 < . . . < tk, ∀n1, . . . , nk ∈ N we have

P
[
Nt1 −Nt0 = n1, . . . , Ntk −Ntk−1

= nk
]

=
k∏
i=1

(λ(ti − ti−1))ni

ni!
e−λ(ti−ti−1).
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Proof. (i) =⇒ (ii) Let u : R+ → R+ and A ∈ (0,∞). Define

B =

∫ A

0

e−u(x)dx.

By definition, M is a point process. Using the density of (S1, . . . , Sn+1), we have

E[e−
∫A
0 udM ] =

∞∑
n=0

E[e−u(S1)−···−u(Sn)1Sn≤A<Sn+1 ]

=
∞∑
n=0

e−λAλn
∫

[0,A]n
e−u(s1)−...−u(sn)1s1<...<snds1 · · · dsn

=
∞∑
n=0

λn

n!
Bne−λA = e−λA+λB = exp

(∫ A

0

(1− e−u(x))λdx

)
.

By monotone convergence, this gives

LM(u) = exp

(∫ ∞
0

(1− e−u(x))λdx

)
.

Therefore, by Theorem 6.24, M is ppp with intensity λLeb.

(ii) =⇒ (iii) This follows from the definition of a ppp applied to the disjoint intervals

(t0, t1], . . . , (tk−1, tk].

(iii) =⇒ (i) We first prove that N has jumps of size 1 on every segment [0, A] for A > 0.

Let En = {∀i ≤ n : N iA
n
−N (i+1)A

n

≤ 1} for n > 0. We have

P [En] =
∏
i≤n

(e−
λA
n + e−

λA
n
λA

n
) = e−A(1 +

λA

n
)n → 1.

Let E =
⋃
n>0En. We have P [E] = 1 (because P [E] ≥ P [En] for all n > 0 ) and furthermore

for all ω ∈ E

∀t ≤ A lim sup
s→0

Nt(ω)−Nt−s(ω) ≤ 1.

This concludes that N has jumps of size 1. We begin with the computation of the law of

(S1, . . . , Sk) for a fixed k ≥ 1. Let U = {(s1, . . . sk) ∈ Rk : 0 ≤ s1 ≤ . . . ≤ sk}. We now show

that for all H ∈ B(U)

P [(S1, . . . , Sk) ∈ H] =

∫
H

λkeλykdy1 . . . dyk.
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By Dynkin’s lemma, it suffices to prove it for H = [s1, t1)× . . .× [sk, tk) where s1 < t1 < . . . <

sk < tk (by convention t0 = 0).

P [∀i ≤ k Si ∈ [si, ti)] = P

[⋂
i≤k

{Nsi −Nti−1
= 0} ∩

⋂
i<k

{Nti −Nsi = 1} ∩ {Ntk −Nsk ≥ 1}

]
=
∏
i≤k

e−λ(si−ti−1) ·
∏
i<k

λ(ti − si)e−λ(si−ti) ·
(
1− e−λ(tk−sk)

)
=
∏
i<k

λ(ti − si)e−λsk
(
1− e−λ(tk−sk)

)
=
∏
i<k

∫ ti

si

λdyi ·
∫ tk

sk

λe−λykdyk.

Hence (S1, . . . , Sk) has density f(y1, . . . , yk) = λke−λyk1y1<...yk . By Proposition 7.1, this implies

that T1 = S1, T2 = S2 − S1, . . . , Tk = Sk − Sk−1 are i.i.d. Exp(λ). Since the choice of k was

arbitrary, this concludes the proof.

7.5 Microscopic Characterization

Definition 7.4. A stochastic process (Xt)t≥0 with values in R is said to have independent

and stationary increments if

∀k ≥ 1, ∀0 = t0 < . . . < tk Xt1 −Xt0 , . . . , Xtk −Xtk−1
are independent,

and

∀s < t, ∀h ≥ 0 Xt −Xs
law
= Xt+h −Xs+h.

Theorem 7.3. Let N be a counting process, λ > 0. The following are equivalent

(i) N is pp(λ),

(ii) N has independent and stationary increments and

P [Nt = 1] = λt+ ot→0(t)

P [Nt ≥ 2] = ot→0(t).
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Remark 7.4. The first equation means limt→0
P[Nt=1]

λt
= 1, and the second equation means

limt→0
P[Nt≥2]

t
= 0.

Lemma 7.5. Let (pn)n>0 be a sequence of parameters (pn ∈ [0, 1]) and λ ∈ (0,∞) such that

lim
n→∞

npn = λ.

For every n let Xn ∼ Bin(n, pn). Then

Xn
(d)−→ Pois(λ).

Proof (Lemma). See Probability Theory, p.47.

Proof (Theorem). =⇒ Theorem 7.2(Item (iii)) implies that N has stationary and indepen-

dent increments. Furthermore, using that Nt ∼ Pois(λt) we obtain the following asymptotic

behaviors as t ↓ 0:

P [Nt = 1] = λte−λt = λt+ o(t),

P [Nt ≥ 2] = 1− eλt − λte−λt = o(t).

⇐= We already have that (Nt) has independent increments. It suffices to prove that

∀s < t Nt −Ns ∼ Pois(λ(t− s)).

Since N has stationary increments, it suffices to prove that

∀t Nt ∼ Pois(λt).

Fix t ∈ (0,∞). Let n > 0. By independence and stationarity of the increments, the variables

Z
(n)
i = 1N it

n
−N (i−1)t

n

≥1 are i.i.d. Ber(pn) random variables, where pn = P
[
N t

n
≥ 1
]

= λ t
n

+o
(
t
n

)
.

Hence Xn =
∑n

i=1 Z
(n)
i is a Bin (n, pn) random variable. Since npn → λt, the lemma implies

that for any k ∈ N

P [Xn = k]→ (λt)k

k!
eλt.

We have for every n > 0

P [Nt 6= Xn] ≤ P

[ ⋃
1≤i≤n

{N it
n
−N (i−1)t

n

≤ 2}

]
≤

n∑
i=1

P
[
N it

n
−N (i−1)t

n

≥ 2
]

= nP
[
N t

n
≥ 2
]
.
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Since P
[
N t

n
≥ 2
]

= o
(
t
n

)
, we get that

lim
n→∞

P [Nt 6= Xn] = 0.

Fix k ∈ N. For every n > 0

|P [Nt = k]− P [Xn = k]| ≤ E [|1Nt=k − 1Xn=k|] ≤ P [Nt 6= Xn] .

Hence P [Nt = k] = limn→∞ P [Xn = k] = (λt)k

k!
e−λk.

7.6 Markov Property

Theorem 7.6 (Markov Property of N). Fix t ≥ 0, the stochastic process N (t) = (N
(t)
s )s≥0

defined by N
(t)
s = Nt+s −Nt is a Poisson process, independent of (Nu)0≤u≤t.

Proof. First observe that N (t) is a counting process (because N is). Let s0 = 0 < s1 < · · · < sk,

and n1, . . . , nk ≥ 0. By the finite-marginal characterization we have

P
[
N (t)
s1
−N (t)

s0
= n1, . . . , N

(t)
sk
−N (t)

sk−1
= nk

]
= P

[
Nt+s1 −Nt+s0 = n1, . . . , Nt+sk −Nt+sk−1

= nk
]

=
k∏
i=1

(λ(si − si−1))ni

ni!
e−λ(si−si−1).

This implies that N (t) is a pp(λ). Independence also follows from Item (iii) of Theorem 7.2.

7.7 Properties of Poisson Process

Theorem 7.7 (Law of Large Numbers). Let N be a pp(λ), λ > 0, then

lim
t→∞

Nt

t
= λ.

Proof. This follows from the law of large numbers for renewal processes with

1

µ
=

1

E[T1]
= λ.
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Theorem 7.8 (Thinning). Let N = (Nt)t≥0 be a pp(λ) with jump times (Si)i≥0. Let

(Xn)n≥0 i.i.d. Ber(p) independent of N . Define

N1
t =

∑
i≥1

1Si≤t,Xi=1,

N0
t =

∑
i≥1

1Si≤t,Xi=0.

(N0
t ) and (N1

t ) are independent Poisson processes with respective rates λ0 = (1−p)λ, λ1 =

pλ.

Remark 7.9. Nt = N0
t +N1

t almost surely.

Proof. Let M =
∑

i δSi be the ppp(λLeb) associated to N . By the thinning theorem,

M (0) =
∑
i≥1

(1−Xi)δSi and M (1) =
∑
i≥1

XiδSi

are two independent ppp with intensities (1 − p)λLeb and pλLeb respectively. Therefore,

by Theorem 7.2, the two corresponding counting processes N0 and N1 are two independent

standard Poisson processes with intensities (1− p)λ and pλ respectively.

Let (N0
t ) and (N1

t ) be independent Poisson processes with respective rates λ0 > 0, λ1 > 0.

Define Nt = N0
t +N1

t . N is a counting process and we define for every i

Xi = 1{i’th jump of Nt is a jumping time of N1
t }.

Theorem 7.10 (Superposition). Nt is a pp(λ0 + λ1) and (Xi) is a marking of N with

∀i P [Xi = 1] =
λ1

λ0 + λ1

.

Proof. N is a counting process (it follows directly from the definition). We consider (Ñt)t≥0

a Poisson process with intensity λ = λ0 + λ1 and (X̃k)k>0 i.i.d. Bernoulli
(

λ1
λ0+λ1

)
. By The-

orem 7.8, the thinned processes Ñ0, Ñ1 constructed from Ñ are two independent processes

with respective rates λ0, λ1. Therefore (Ñ0, Ñ1) have the same distribution as (N0, N1). This
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implies that N = N0 + N1 have the same distribution as Ñ = Ñ0 + Ñ1, which implies that

it is pp(λ). For the independence with the Xi’s, observe that the sequence X = (Xi)i≥1 is

measurable with respect to (N0, N1) there exists a measurable map f such that

X = f(N0, N1) and X̃ = f(Ñ0, Ñ1).

This implies already that X has the same distribution as X̃, and therefore, it is a sequence

of iid Bernoulli random variables. Furthermore, we can deduce the independence of X and N

from the independence of X̃ and Ñ : for every φ, ψ measurable bounded,

E[φ(N)ψ(X)] = E[φ(N0 +N1)ψ(f(N0, N1))]

= E[φ(Ñ0 + Ñ1)ψ(f(Ñ0, Ñ1))]

= E[φ(Ñ)ψ(X̃)]

= E[φ(Ñ)] E[ψ(X̃)]

= E[φ(N)] E[ψ(X)].
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Chapter 8

Appendix

Lemma 8.1. Let A ⊂ N \ {0} be stable under addition (i.e. x, y ∈ A =⇒ x+ y ∈ A). Then

gcd(A) = 1⇐⇒ ∃n0 ∈ N : {n ∈ N : n ≥ n0} ⊂ A.

Proof. ⇐=: Follows from the fact that gcd(n0, n0 + 1) = 1.

=⇒ : Assume gcd(A) = 1. Let a ∈ A be arbitrary and a =
∏k

i=1 p
alphai
i be its prime

factorization. Since gcd(A) = 1, one can find b1, . . . , bk ∈ A such that for all i pi - bi. This

implies

gcd(a, b1, . . . , bk) = 1.

Write d = gcd(b1, . . . , bk). By Bezout’s Theorem, we can pick u1, . . . , uk ∈ Z such that

u1b1 + . . .+ ukbk = d.

Now, choose an integer λ large enough such that ui + λa ≥ 0 for every i and define

b = (u1 + λa)b1 + . . .+ (uk + λa)bk = d+ λ(b1 + . . .+ bk)a.

The first expression shows that b ∈ A, and the second implies that gcd(a, b) = gcd(a, d) = 1.

To summarize, we found a, b ∈ A such that gcd(a, b) = 1.

Without loss of generality, we may assume a < b. Since gcd(a, b) = 1, the set B =

{b, 2b, . . . , ab} covers all of the residue classes modulo a. Since a < b, this implies that B +

{ka, k ∈ N} includes every number z ≥ ab. This concludes the proof by choosing n0 = ab.
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