

Applied Stochastic Processes

Vincent Tassion Laurin Köhler-Schindler, Ritvik Radhakrishnan

ETH zürich

Februar 21, 2023

1. What is a stochastic process?

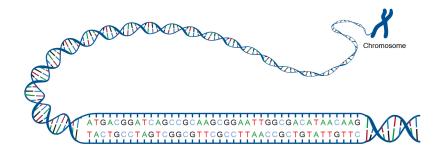
- 1. What is a stochastic process?
- 2. Goals/content of the lectures

- 1. What is a stochastic process?
- 2. Goals/content of the lectures
- 3. Administrative and practical information

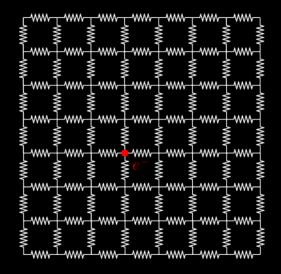
- 1. What is a stochastic process?
- 2. Goals/content of the lectures
- 3. Administrative and practical information
- 4. Chapter 1: Markov Chains

1. What is a stochastic process?

A stochastic process in Genetics

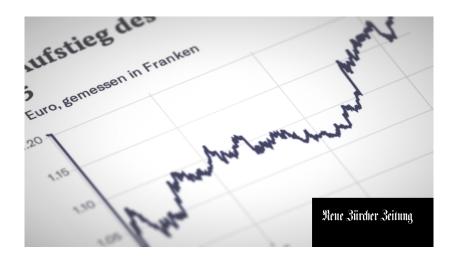


In Electronics



On the road

In Finance



In Geneva

Mysterious

Mathematical definition

Setup:

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space.
- $\bullet~(S,\mathcal{S})$ measured space. "state space"

Reminder: Random Variable

A $\underline{\mathsf{random}}\ \mathsf{variable}$ in S is a measurable map

 $X:\Omega\to S.$

$$\overset{\circ}{\mathbb{Q}} X =$$
 "random point in S".

Examples:

• $S = \{-1, 1\},\$

$$\mathbb{P}[X = -1] = \mathbb{P}[X = 1] = \frac{1}{2}$$
. "Coin Flip".

• $S = \mathbb{R}, X \sim \mathcal{N}(0, 1).$

Mathematical definition

Setup:

- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space.
- (S, \mathcal{S}) measured space. "state space"

Definition

A discrete-time stochastic process in S is a sequence $X=(X_n)_{n\in\mathbb{N}}$ of random variables in S.

 $\hat{\mathbb{Q}}$ Discrete stochastic process = "random sequence".

Examples:

- $(X_n)_{n \in \mathbb{N}}$ iid coinflips.
- $(S_n)_{n \in \mathbb{N}}$ where $S_n = X_1 + \dots + X_n$. " random walk"
- $(M_n)_{n \in \mathbb{N}}$ martingale.

Mathematical definition

Setup:

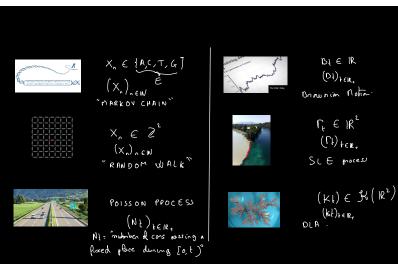
- $(\Omega, \mathcal{F}, \mathbb{P})$ probability space.
- (S, \mathcal{S}) measured space. "state space"

Definition

A continuous-time stochastic process in S is a collection $X=(X_t)_{t\in\mathbb{R}_+}$ of random variables in S.

 $\overset{\circ}{\mathbb{Q}}$ Continuous Stochastic Process = "random function".

Applications



2. Goals/content of the lectures

1. Markov Chains (4-5 weeks)

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

Goals

• Study of 5 fundamental stochatic processes

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - → Formal definition,

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - ➔ Formal definition,
 - → Simulation/existence,

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - → Formal definition,
 - → Simulation/existence,
 - → Basic properties, transformations, symmetries,

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - ➔ Formal definition,
 - → Simulation/existence,
 - ➔ Basic properties, transformations, symmetries,
 - → Asymptotic behaviour,

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - ➔ Formal definition,
 - → Simulation/existence,
 - → Basic properties, transformations, symmetries,
 - → Asymptotic behaviour,
 - → Applications.

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - ➔ Formal definition,
 - → Simulation/existence,
 - ➔ Basic properties, transformations, symmetries,
 - → Asymptotic behaviour,
 - ➔ Applications.
- Strengthen probability language/intuition.

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - ➔ Formal definition,
 - → Simulation/existence,
 - ➔ Basic properties, transformations, symmetries,
 - → Asymptotic behaviour,
 - → Applications.
- Strengthen probability language/intuition.
- Clear understanding of key results.

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - ➔ Formal definition,
 - → Simulation/existence,
 - ➔ Basic properties, transformations, symmetries,
 - → Asymptotic behaviour,
 - → Applications.
- Strengthen probability language/intuition.
- Clear understanding of key results.
- Connection with other fields of mathematics.

- 1. Markov Chains (4-5 weeks)
- 2. Renewal Processes (2 weeks)
- 3. Poisson Point Processes (2 weeks)
- 4. Standard Poisson Processes (1-2 weeks)
- 5. Continuous-time Markov Chains (2 weeks)

- Study of 5 fundamental stochatic processes
 - ➔ Formal definition,
 - → Simulation/existence,
 - ➔ Basic properties, transformations, symmetries,
 - → Asymptotic behaviour,
 - → Applications.
- Strengthen probability language/intuition.
- Clear understanding of key results.
- Connection with other fields of mathematics.
- Prepare to Brownian Motion.