Mathematics for New Technologies in Finance

Exercise sheet 2

Through this exercise sheet, we let $E=\mathbb{R}^{d}, J$ an interval on \mathbb{R}, and denote $\operatorname{Sig}_{J}: \mathcal{C}_{0}^{1}(J, E) \rightarrow$ $\mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}_{0}^{1}(J, E)$ and we let $\mathbf{S i g}_{J}^{(M)}$ denote the truncated signature map up to order $M: \operatorname{Sig}_{J}^{(M)}(X)=\left(1, \mathbf{s}_{1}, \cdots, \mathbf{s}_{M}\right) \in \mathbf{T}^{(M)}(E)$. Let $X \in \mathcal{C}_{0}^{1}([0, s], E)$ and $Y \in \mathcal{C}_{0}^{1}([s, t], E)$.

Exercise 2.1 (Signatures)

(a) Let $X_{t}=t \mathbf{x} \in \mathbb{R}^{d}$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}(X)$.
(b) Let $X \in \mathcal{C}_{0}^{1}([0, T], E)$ and $X_{0}=0$. Prove that

$$
\begin{equation*}
\operatorname{Sig}_{[0,1]}(X)_{1,2}+\operatorname{Sig}_{[0,1]}(X)_{2,1}=\operatorname{Sig}_{[0,1]}(X)_{1} \cdot \operatorname{Sig}_{[0,1]}(X)_{2} \tag{1}
\end{equation*}
$$

Exercise 2.2 (Calculate Signatures)

(a) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ s.t. $X_{t}=\sin (t)$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2 .
(b) Let $X \in \mathcal{C}_{0}^{1}\left([0,1], \mathbb{R}^{2}\right)$ s.t. $X_{t}=(t, \sin (t))$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2.
(c) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ and $n \in \mathbb{N}$. Calculate $\int_{0}^{1} t^{n} d X_{t}$ when
(i) $X_{t}=t$
(ii) $X_{t}=\sin (t)$
(d) Prove that

$$
\mathcal{F}=\left\{\mathcal{C}_{0}^{1}([0,1], \mathbb{R}) \ni X \mapsto \sum_{i=1}^{n} \lambda_{i} \int t^{i} d X_{t} \in \mathbb{R}: \forall \lambda_{i} \in \mathbb{R}, n \in \mathbb{N}\right\}
$$

is a point-separating vector space. $\mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ is the space of all function f on $[0,1]$ with $f(0)=0$ and f has continuous derivative.

References

[1] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788, 2016.
[2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.

