Mathematics for New Technologies in Finance
 Exercise sheet 4

Exercise 4.1 (Brownian motion) For all $N \in \mathbb{N}$, we split $[0,1]$ into N many intervals with equal length $\delta=\frac{1}{N}$. We define a discrete stochastic processes W^{N} at $\{0, \delta, 2 \delta, \ldots, 1\}$ s.t. $W_{0}^{N}=0$ and

$$
W_{n \delta+\delta}^{N}-W_{n \delta}^{N}=X_{n}, \quad \forall n=1, \ldots, N
$$

where $\left(X_{n}\right)$ are i.i.d. random variable s.t. $\mathbb{P}\left(X_{n}=\sqrt{\delta}\right)=\mathbb{P}\left(X_{n}=-\sqrt{\delta}\right)=\frac{1}{2}$. W^{N} is a symmetric random walk with walking size $\sqrt{\delta}$.
(a) Prove that at $t=n \delta$.

$$
\begin{equation*}
\mathbb{E}\left[W_{t}^{N}\right]=0, \quad \operatorname{Var}\left[W_{t}^{N}\right]=t \tag{1}
\end{equation*}
$$

(b) Prove that at each fixed $t=n \delta$, as $n \rightarrow \infty$.

$$
\begin{equation*}
W_{t}^{N} \rightarrow \mathcal{N}(0, t) \tag{2}
\end{equation*}
$$

(c) What is the definition of Brownian motion?
(d) Prove that Brownian motion is $\frac{1}{2}-\epsilon$ Hölder continuous a.s. (Hint: Borel-Cantelli Lemma)

Exercise 4.2 (Ito's formula) Let W be a Brownian motion on $[0, \infty)$ and define

$$
\begin{equation*}
Q^{n}(W)=\sum_{i=1}^{n}\left(W_{\frac{i}{n}}-W_{\frac{i-1}{n}}\right)^{2} \tag{3}
\end{equation*}
$$

(a) Prove that $Q^{n}(W)$ converges to 1 in L^{2}
(b) Prove the following convergence in L^{2} sense

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} W_{\frac{i-1}{n}}\left(W_{\frac{i}{n}}-W_{\frac{i-1}{n}}\right)=\frac{W_{1}^{2}-1}{2} \tag{4}
\end{equation*}
$$

(c) Prove that if f is smooth and bounded

$$
\begin{equation*}
f\left(W_{t}\right)=f(0)+\int_{0}^{t} f^{\prime}\left(W_{s}\right) d W_{s}+\int_{0}^{t} \frac{f^{\prime \prime}\left(W_{s}\right)}{2} d s \tag{5}
\end{equation*}
$$

Exercise 4.3 (Black-Scholes model) Let $\sigma>0, X_{t}=X_{0} \exp \left\{\sigma W_{t}-\frac{\sigma^{2} t}{2}\right\}$.
(a) Prove that X is a solution of

$$
d X_{t}=\sigma X_{t} d W_{t}
$$

(b) Let $K>0$, calculate

$$
C_{0}=\mathbb{E}\left[\left(X_{T}-K\right)_{+}\right]
$$

(c) Let $K>0$, calculate

$$
\frac{\partial}{\partial X_{0}} \mathbb{E}\left[\left(X_{T}-K\right)_{+}\right]
$$

