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Exercise 7.1 (Bayesian optimization)

(a) Recall the definition of prior, likelihood, posterior, and evidence distributions in bayesian
statistics.

(b) Consider linear model on R: Y ~ X + Z, 6 ~ N(0,1), Z ~ N(0,1), and € independent with
X. Compute pg(y|x) and p(f|x,y). Prove that maximizing the posterior p(f|z,y) is exactly
doing Ridge regression (fix A here).

(¢) Consider Lasso regression, what is the prior under Bayesian perspective? Please calculate the
posterior under this prior.

(d) Would you expect a sparser weight or denser weight using Lasso regression instead of Ridge
regression.

Exercise 7.2 (Stochastic gradient descent)
(a) Assume that we aim to find the 6* to maximize the posterior:
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with stochastic gradient descent method in practice. In each step, do we calculate Vp(8|z1, -, 25)?
do we calculate Vlogp(f|xy,--- ,x,)? do we calculate Vlogp(0) or Vlogp(z;]0)?

(b) If p(x1,- - ,x,) has no closed formula, does it cause a trouble when we do stochastic gradient
descent?

(c¢) Construct a stochastic differential equation with invariant measure to be the posterior
distribution p(f|xy,- -, x,).
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