Mathematics for New Technologies in Finance Solution sheet 2

Through this exercise sheet, we let $E=\mathbb{R}^{d}, J$ an interval on \mathbb{R}, and denote $\operatorname{Sig}_{J}: \mathcal{C}_{0}^{1}(J, E) \rightarrow$ $\mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}_{0}^{1}(J, E)$ and we let $\mathbf{S i g}_{J}^{(M)}$ denote the truncated signature map up to order $M: \operatorname{Sig}_{J}^{(M)}(X)=\left(1, \mathbf{s}_{1}, \cdots, \mathbf{s}_{M}\right) \in \mathbf{T}^{(M)}(E)$. Let $X \in \mathcal{C}_{0}^{1}([0, s], E)$ and $Y \in \mathcal{C}_{0}^{1}([s, t], E)$.

Exercise 2.1 (Signatures)

(a) Let $X_{t}=t \mathbf{x} \in \mathbb{R}^{d}$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}(X)$.
(b) Let $X \in \mathcal{C}_{0}^{1}([0, T], E)$ and $X_{0}=0$. Prove that

$$
\begin{equation*}
\operatorname{Sig}_{[0,1]}(X)_{1,2}+\operatorname{Sig}_{[0,1]}(X)_{2,1}=\operatorname{Sig}_{[0,1]}(X)_{1} \cdot \operatorname{Sig}_{[0,1]}(X)_{2} \tag{1}
\end{equation*}
$$

Solution 2.1

(a)

$$
\begin{equation*}
\operatorname{Sig}_{[0,1]}(X)=\left(1, \mathbf{x}, \frac{\mathbf{x}^{\otimes 2}}{2!}, \cdots\right) \tag{2}
\end{equation*}
$$

(b) By integration by part, we directly show the equality

$$
\begin{equation*}
\int_{0}^{1} u_{t}^{(1)} d u_{t}^{(2)}+\int_{0}^{1} u_{t}^{(2)} d u_{t}^{(1)}=\int_{0}^{1} d\left(u^{(1)} \cdot u^{(2)}\right)_{t}=u_{1}^{(1)} \cdot u_{1}^{(2)} \tag{3}
\end{equation*}
$$

Exercise 2.2 (Calculate Signatures)

(a) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ s.t. $X_{t}=\sin (t)$ for all $t \in[0,1]$. Calculate $\mathbf{S i g}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2 .
(b) Let $X \in \mathcal{C}_{0}^{1}\left([0,1], \mathbb{R}^{2}\right)$ s.t. $X_{t}=(t, \sin (t))$ for all $t \in[0,1]$. Calculate $\operatorname{Sig}_{[0,1]}^{(2)}(X)$ i.e. the signatures of X up to order 2.
(c) Let $X \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ and $n \in \mathbb{N}$. Calculate $\int_{0}^{1} t^{n} d X_{t}$ when
(i) $X_{t}=t$
(ii) $X_{t}=\sin (t)$
(d) Prove that

$$
\mathcal{F}=\left\{\mathcal{C}_{0}^{1}([0,1], \mathbb{R}) \ni X \mapsto \sum_{i=1}^{n} \lambda_{i} \int t^{i} d X_{t} \in \mathbb{R}: \forall \lambda_{i} \in \mathbb{R}, n \in \mathbb{N}\right\}
$$

is a point-separating vector space. $\mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ is the space of all function f on $[0,1]$ with $f(0)=0$ and f has continuous derivative.

Solution 2.2

(a)

$$
\begin{equation*}
\left(1, \sin (1), \int_{0}^{1} \sin (t) \cos (t) d t\right) \tag{4}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\left(1,1, \sin (1), \frac{1}{2}, \int_{0}^{1} \sin (t) d t, \int_{0}^{1} t \cos (t) d t, \int_{0}^{1} \sin (t) \cos (t) d t\right) \tag{5}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\left(1,1, \sin (1), \frac{1}{2}, \int_{0}^{1} \sin (t) d t, \int_{0}^{1} t \cos (t) d t, \int_{0}^{1} \sin (t) \cos (t) d t\right) \tag{6}
\end{equation*}
$$

(d) (i)

$$
\begin{equation*}
\left.\frac{t^{n+1}}{n+1}\right|_{0} ^{1} \tag{7}
\end{equation*}
$$

(ii)

$$
\begin{align*}
\int_{0}^{1} t^{n} d \sin (t) & =\left.\sin (t) t^{n}\right|_{0} ^{1}+\int_{0}^{1} n t^{n-1} d \cos (t) \\
& =\left.\sin (t) t^{n}\right|_{0} ^{1}+\int_{0}^{1} n t^{n-1} d \cos (t) \tag{8}\\
& =\left.\sin (t) t^{n}\right|_{0} ^{1}+\left.n \cos (t) t^{n-1}\right|_{0} ^{1}-\int_{0}^{1} n(n-1) t^{n-2} d \sin (t) \\
& =\ldots
\end{align*}
$$

(e) Vector space holds directly from the definition. So we remain to show point-separating. Let us consider $Z \in \mathcal{C}_{0}^{1}([0,1], \mathbb{R})$ s.t.

$$
\int \sum_{i=1}^{n} \lambda_{i} t^{i} d Z_{t}=0, \quad \forall \lambda_{i} \in \mathbb{R}, n \in \mathbb{N}
$$

An elementary approach is using universal approximation of polynomials. Since Z^{\prime} is continuous on $[0,1]$, it can be universally approximated by polynomials, and therefore we have

$$
\begin{equation*}
\int_{0}^{1}\left(Z_{t}^{\prime}\right)^{2} d t=\lim _{n \rightarrow \infty} \int \sum_{i=1}^{n} \lambda_{i} t^{i} d Z_{t}=0 \tag{9}
\end{equation*}
$$

This implies that $Z=0$ because it starts from 0 , which completes the proof.
Remark: It worth noticing that this essentially relies on that Z^{\prime} is continuous. But we can actually make the proof more general by considering function X which are only L-Lipschitz and starting from 0 , and then a more general proof can be done by fourier analysis. Since $\sin (m \pi t)$ and $\cos (m \pi t)$ for all $m \in \mathbb{N}$ are uniformly approximated by polynomial on $[0,1]$. We have for all $m \in \mathbb{N}$

$$
\begin{equation*}
\int \sin (m t) d Z_{t}=\int \cos (m t) d Z_{t}=0 \tag{10}
\end{equation*}
$$

Then we define a sign measure $\mu(d t)=Z_{t}^{\prime} d t$ (Because by Rademacher's Lipschitz function is almost everywhere differentiable and here we even know that $\left|Z_{t}^{\prime}\right| \leq L$ almost surely), then for all $m \in \mathbb{N}$

$$
\begin{equation*}
\int \sin (m t) d \mu=\int \cos (m t) d \mu=0 \tag{11}
\end{equation*}
$$

Then by fourier analysis we know $\mu=0$ so Z is constant, which is actually 0 because $Z(0)=0$. This proof uses the same idea used in the proof of universal approximation theory of neural network by G. Cybenko.

References

[1] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788, 2016.
[2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.

