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Through this exercise sheet, we let E = Rd, J an interval on R, and denote SigJ : C1
0(J, E) →

T(E) the signature map for all X ∈ C1
0(J, E) and we let Sig(M)

J denote the truncated signature
map up to order M : Sig(M)

J (X) = (1, s1, · · · , sM ) ∈ T(M)(E).

Exercise 3.1 (Controlled ODEs) Consider the controlled ODE: X0 = x ∈ R

dXθ
t = V θ(t, Xθ

t )dt, t ∈ [0, T ]. (1)

(a) Let

at = ∂Xθ
T

∂Xθ
t

. (2)

Prove that
d

dt
at = −∂V θ

∂x
(t, Xθ

t ) · at, aT = 1, (3)

and relate at with Jt,T in the lecture notebook.

(b) Prove that
d

dt
(∂Xθ

t

∂θ
at) = at

∂V θ

∂θ
(t, Xθ

t ), (4)

and
∂Xθ

T

∂θ
= −

∫ 0

T

∂Xθ
T

∂Xθ
t

· ∂V θ

∂θ
(t, Xθ

t )dt. (5)

(c) Is every feedforward neural network a discretization of controlled ODE?

Solution 3.1
(a) We know

at = ∂Xθ
T

∂Xθ
t

= ∂Xθ
T

∂Xθ
t+∆t

·
∂Xθ

t+∆t

∂Xθ
t

= at+∆t ·
∂Xθ

t+∆t

∂Xθ
t

.

(6)

Also we know
Xθ

t+∆t = Xθ
t +

∫ t+∆t

t

V θ(Xθ
s , s)ds (7)

Taking partial derivative on both side we have

∂Xθ
t+∆t

∂Xθ
t

= 1 +
∫ t+∆t

t

∂xV θ(Xθ
s , s)ds (8)

Plug this into (6) we have

at − at+∆t

at+∆t
=
∫ t+∆t

t

∂xV θ(Xθ
s , s)ds. (9)

Let ∆t → 0 we obtain
d

dt
at = −∂V θ

∂x
(t, Xθ

t ) · at (10)
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(b)
d

dt
(∂Xθ

t

∂θ
at) = d

dt
(∂Xθ

t

∂θ
) · at + dat

dt
· (∂Xθ

t

∂θ
)

= ∂

∂θ
V θ(Xθ

t , t) · at − ∂V θ

∂x
(t, Xθ

t ) · at · (∂Xθ
t

∂θ
)

= at
∂V θ

∂θ
(t, Xθ

t ).

(11)

(c) Yes

Exercise 3.2 (Linear controlled ODE) Let E = Rd, W = Rn. Let X ∈ C1
0([0, T ], E) and let

B : E → L(W ) be a bounded linear map. Consider
dYt = B(dXt)(Yt) (12)

If we denote Bk = B(ek), k = 1, · · · , d then

dYt =
d∑

k=1
Bk(Yt)dXk

t . (13)

Prove that

Yt =
( ∞∑

k=0
B⊗k

)(
Sig[0,t](X)

)
Y0. (14)

This implies that the solution of controlled SDE could be written as a linear function on signature
stream of driving path. This implies that signature stream is a promising feature for controlled
ODE.

Solution 3.2 It follows from Picard’s iteration that

Y n
t =

(
I +

n∑
k=1

B⊗k

∫
t1<···<tk∈[0,t]

dXt1 ⊗ · · · ⊗ dXtk

)
Y0

=
(

I +
n∑

k=1

d∑
i1,··· ,ik=1

Bik · · · Bi1

∫
t1<···<tk∈[0,t]

dXi1
t1

· · · dXik
tk

)
Y0.

(15)

Let the variation of X ∈ C1
0([0, T ], E) denoted by ∥X∥[0,T ], then∥∥∥∫
t1<···<tk∈[0,t]

dXt1 ⊗ · · · ⊗ dXtk

∥∥∥
E⊗k

≤
∥X∥k

[0,T ]

k! . (16)

Therefore, Y n
t converges to Yt as n → ∞ i.e.

∥Yt − Y n
t ∥W ≤

∑
k>n

∥B∥k
L(E,L(W ))∥X∥k

[0,T ]

k! ≤
∥B∥n+1

L(E,L(W ))∥X∥n+1
[0,T ]

n! → 0, as n → ∞ (17)

and

Yt =
(

I +
∞∑

k=1
B⊗k

∫
t1<···<tk∈[0,t]

dXt1 ⊗ · · · ⊗ dXtk

)
Y0. (18)

In the language of signature, we have that

Yt =
( ∞∑

k=0
B⊗k

)(
Sig[0,t](X)

)
Y0. (19)

This implies that the solution of controlled SDE could be written as a linear function on signature
stream of driving path. This implies that signature stream is a promising feature for controlled
ODE.
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