Mathematics for New Technologies in Finance

Solution sheet 4

Exercise 4.1 (Brownian motion) For all $N \in \mathbb{N}$, we split [0, 1] into N many intervals with equal length $\delta = \frac{1}{N}$. We define a discrete stochastic processes W^N at $\{0, \delta, 2\delta, \ldots, 1\}$ s.t. $W_0^N = 0$ and

$$W_{n\delta+\delta}^N - W_{n\delta}^N = X_n, \quad \forall n = 1, \dots, N,$$

where (X_n) are i.i.d. random variable s.t. $\mathbb{P}(X_n = \sqrt{\delta}) = \mathbb{P}(X_n = -\sqrt{\delta}) = \frac{1}{2}$. W^N is a symmetric random walk with walking size $\sqrt{\delta}$.

(a) Prove that at $t = n\delta$.

$$\mathbb{E}[W_t^N] = 0, \quad \operatorname{Var}[W_t^N] = t. \tag{1}$$

(b) Prove that at each fixed $t = n\delta$, as $n \to \infty$.

$$W_t^N \to \mathcal{N}(0, t).$$
 (2)

- (c) What is the definition of Brownian motion?
- (d) Prove that Brownian motion is $\frac{1}{2} \epsilon$ Hölder continuous a.s. for all $\epsilon \in (0, \frac{1}{2})$. (Hint: Borel-Cantelli Lemma)

Solution 4.1

(a)

$$\mathbb{E}[W_t^N] = \mathbb{E}[\sum_{i=1}^n X_i] = 0.$$
(3)

By independence

$$\operatorname{Var}[W_t^N] = \operatorname{Var}(\sum_{i=1}^n X_i) = \sum_{i=1}^n \operatorname{Var}(X_i) = n\delta = t.$$
 (4)

(b) By CLT

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} X_i}{\sqrt{n}} \sim \mathcal{N}(0, t) \tag{5}$$

- (c) A equivalent definition to the standard one is the following: Let $H = L^2((0, \infty), \mathcal{B}((0, \infty)), \lambda)$ a Hilbert space where λ is the Lesbesgue meansure. Denote by W the H-isonormal Gaussian process and let $B_t = W(\mathbb{1}_{(0,t]})$. Then (B_t) has the law as the Brownian motion and the a.s. continuous path can be proven by the standard Kolmogorov's continuity theorem.
- (d) Recall the Kolmogorov's continuity theorem (an application of Borel-Cantelli). If a real-valued stochastic process (X_t) has the property that for all K > 0, there exists positive α, β, C such that for all $0 \le t \le t + h \le K$,

$$\mathbb{E}[|X_{t+h} - X_t|^{\alpha}] \le Ch^{1+\beta}.$$
(6)

Then a.s. (X_t) is γ -Hölder-continuous for all $\gamma < \frac{\beta}{\alpha}$. Since for all $k \in \mathbb{N}$ there exists C > 0 s.t.

$$\mathbb{E}[|B_{t+h} - B_t|^{2k}] \le Ch^{1+k}.$$
(7)

Therefore Brownian motion is $\frac{1}{2} - \epsilon$ Hölder continuous a.s. for all $\epsilon \in (0, \frac{1}{2})$.

Updated: March 29, 2023

1/3

$$Q^{n}(W) = \sum_{i=1}^{n} (W_{\frac{i}{n}} - W_{\frac{i-1}{n}})^{2}.$$
(8)

- (a) Prove that $Q^n(W)$ converges to 1 in L^2
- (b) Prove the following convergence in L^2 sense

$$\lim_{n \to \infty} \sum_{i=1}^{n} W_{\frac{i-1}{n}} (W_{\frac{i}{n}} - W_{\frac{i-1}{n}}) = \frac{W_1^2 - 1}{2}$$
(9)

(c) Prove that if f is smooth and bounded

$$f(W_t) = f(0) + \int_0^t f'(W_s) dW_s + \int_0^t \frac{f''(W_s)}{2} ds.$$
 (10)

Solution 4.2

(a)

$$\begin{split} \mathbb{E}\Big[\Big(\sum_{i=1}^{n} (W_{\frac{i}{n}} - W_{\frac{i-1}{n}})^2 - 1\Big)^2\Big] &= \operatorname{Var}(\sum_{i=1}^{n} (W_{\frac{i}{n}} - W_{\frac{i-1}{n}})^2) \\ &= \sum_{i=1}^{n} \operatorname{Var}((W_{\frac{i}{n}} - W_{\frac{i-1}{n}})^2) \\ &= n(\mathbb{E}(W_{\frac{1}{n}}^4) - \frac{1}{n^2}) \\ &= n(\frac{3}{n^2} - \frac{1}{n^2}) \to 0 \quad \text{ as } n \to \infty \end{split}$$

(b) Combining (a) and the fact that

$$2W_{\frac{i-1}{n}}(W_{\frac{i}{n}} - W_{\frac{i-1}{n}}) = (W_{\frac{i}{n}} + W_{\frac{i-1}{n}})(W_{\frac{i}{n}} - W_{\frac{i-1}{n}}) - (W_{\frac{i}{n}} - W_{\frac{i-1}{n}})^2.$$

(c) By Ito's formula

$$df(W_t) = f'(W_t)dW_t + \frac{1}{2}f''(W_t)dt.$$

Then taking integral of both sides gives us the result.

Exercise 4.3 (Black-Scholes model) Let $\sigma > 0$, $X_t = X_0 \exp\{\sigma W_t - \frac{\sigma^2 t}{2}\}$.

(a) Prove that X is a solution of

$$dX_t = \sigma X_t dW_t.$$

(b) Let K > 0, calculate

$$C_0 = \mathbb{E}[(X_T - K)_+].$$

(c) Let K > 0, calculate

$$\frac{\partial}{\partial X_0} \mathbb{E}[(X_T - K)_+].$$

Solution 4.3

Updated: March 29, 2023

(a) Check by Ito's formula

(b)

$$C_0 = X_0 \Phi(d_1) - K \Phi(d_2) \tag{11}$$

where

$$d_1 = \frac{\log(\frac{X_0}{K}) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}, \quad d_2 = d_1 - \sigma\sqrt{T}.$$

We show details in exercise class.

(c)

$$\frac{\partial}{\partial X_0} \mathbb{E}[(X_T - K)_+] = \Phi(d_1).$$

We show details in exercise class.