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Exercise 7.1 (Bayesian optimization)

(a) Recall the definition of prior, likelihood, posterior, and evidence distributions in bayesian
statistics.

(b) Consider linear model on R: Y ∼ θX + Z, θ ∼ N (0, 1), Z ∼ N (0, 1), and θ independent with
X. Compute pθ(y|x) and p(θ|x, y). Prove that maximizing the posterior p(θ|x, y) is exactly
doing Ridge regression (fix λ here).

(c) Consider Lasso regression, what is the prior under Bayesian perspective? Please calculate the
posterior under this prior.

(d) Would you expect a sparser weight or denser weight using Lasso regression instead of Ridge
regression.

Solution 7.1

(a) Posterior = Likelihood * Prior / Evidence

(b) See the proof here.

(c) Sparser for Lasso.

Exercise 7.2 (Stochastic gradient descent)

(a) Assume that we aim to find the θ∗ to maximize the posterior:

p(θ|x1, · · · , xn) =
p(θ)

∏n
i=1 p(xi|θ)

p(x1, · · · , xn) (1)

with stochastic gradient descent method in practice. In each step, do we calculate ∇p(θ|x1, · · · , xn)?
do we calculate ∇ log p(θ|x1, · · · , xn)? do we calculate ∇ log p(θ) or ∇ log p(xi|θ)?

(b) If p(x1, · · · , xn) has no closed formula, does it cause a trouble when we do stochastic gradient
descent?

(c) Construct a stochastic differential equation with invariant measure to be the posterior
distribution p(θ|x1, · · · , xn).

Solution 7.2

(a) We calculate ∇ log p(θ) and ∇ log p(xi|θ).

(b) No, because this is a scaling term

(c) See lecture notebook 3
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