Mathematics for New Technologies in Finance

Solution sheet 9

Through this exercise sheet, we let $E = \mathbb{R}^d$, J an interval on \mathbb{R} , and denote $\mathbf{Sig}_J \colon \mathcal{C}^1_0(J, E) \to \mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}^1_0(J, E)$ and we let $\mathbf{Sig}_J^{(M)}$ denote the truncated signature map up to order $M \colon \mathbf{Sig}_J^{(M)}(X) = (1, \mathbf{s}_1, \cdots, \mathbf{s}_M) \in \mathbf{T}^{(M)}(E)$. Let $X \in \mathcal{C}^1_0([0, s], E)$ and $Y \in \mathcal{C}^1_0([s, t], E)$. The concatenated path $X \star Y \in \mathcal{C}^1_0([0, t], E)$ is defined by

Coordinator: Songyan Hou

Exercise 9.1 (Basic properties of signatures)

(a) (Invariant under reparametrization) Let $X \in \mathcal{C}_0^1([S_1, T_1], E)$ and $\tau \colon [S_2, T_2] \to [S_1, T_1]$ a non-decreasing surjective reparametrization. Then

$$\mathbf{Sig}_{[S_2, T_2]}(X_{\tau(\cdot)}) = \mathbf{Sig}_{[S_1, T_1]}(X).$$
 (2)

- (b) Prove that neither is $\mathbf{Sig}_{[0,1]}$ surjective nor the range of which a linear subspace of $\mathbf{T}(E)$.
- (c) Prove that signature of the augmented paths i.e. $\bar{X}_t = (t, X_t)$ is unique.
- (d) Prove that signature satisfies the following equation

$$d\mathbf{Sig}_{[0,t]}(X) = \mathbf{Sig}_{[0,t]}(X) \otimes dX_t \tag{3}$$

Solution 9.1

- (a) Because line integral is invariant under reparametrization and the definition of
- (b) Because

$$\mathbf{Sig}_{[0,1]}(X)_{1,2} + \mathbf{Sig}_{[0,1]}(X)_{2,1} = \mathbf{Sig}_{[0,1]}(X)_1 \cdot \mathbf{Sig}_{[0,1]}(X)_2. \tag{4}$$

- (c) Because signature is unique under tree like equivalent, so with one augmented coordinate as strictly increasing, the only tree like equivalent path is the augmented path it self .
- (d)

$$d\mathbf{Sig}_{[0,t_{1}]}(X) = d\left(\int_{0}^{t_{1}} \cdots \int_{0}^{t_{m}} dX_{t_{m}}^{i_{m}} \dots dX_{t_{1}}^{i_{1}}\right)_{(i_{1},\dots,i_{m})\in\{1,\dots,d\}^{m}}$$

$$= \left(\int_{0}^{t_{2}} \cdots \int_{0}^{t_{m}} dX_{t_{m}}^{i_{m}} \dots dX_{t_{2}}^{i_{2}}\right)_{(i_{2},\dots,i_{m})\in\{1,\dots,d\}^{m-1}} (dX_{t_{1}}^{i_{1}})_{i_{1}\in\{1,\dots,d\}}$$

$$= \mathbf{Sig}_{[0,t_{1}]}(X) \otimes dX_{t_{1}}$$
(5)

Exercise 9.2 (Chen's identity)

(a) Prove the Chen's identity:

$$\mathbf{Sig}_{[r\,t]}(X \star Y) = \mathbf{Sig}_{[r\,s]}(X) \otimes \mathbf{Sig}_{[s\,t]}(Y). \tag{6}$$

(b) Prove the Chen's identity for truncated signature:

$$\mathbf{Sig}_{[r,t]}^{(M)}(X \star Y) = \mathbf{Sig}_{[r,s]}^{(M)}(X) \otimes \mathbf{Sig}_{[s,t]}^{(M)}(Y). \tag{7}$$

(c) Let X be linear on [n, n+1] and let $X_{n+1} - X_n = \mathbf{x}_n$ for $n \in \mathbb{N}$, use Chen's identity to prove that

$$\mathbf{Sig}_{[0,N]}(X) = \bigotimes_{n \le N} (1, \mathbf{x}_n, \frac{\mathbf{x}_n^{\otimes 2}}{2!}, \cdots). \tag{8}$$

Solution 9.2

(a) By the uniqueness of the solution of linear ode. we only need to check that $\mathbf{Sig}_{[r,s]}(X) \otimes \mathbf{Sig}_{[s,t]}(Y)$ follows the dynamic. On [0,s] it is obvious and on $u \in [s,t]$

$$d\Big(\mathbf{Sig}_{[r,s]}(X)\otimes\mathbf{Sig}_{[s,u]}(Y)\Big) = \mathbf{Sig}_{[r,s]}(X)\otimes\Big(\mathbf{Sig}_{[s,u]}(Y)dY_u\Big) = \Big(\mathbf{Sig}_{[r,s]}(X)\otimes\mathbf{Sig}_{[s,u]}(Y)\Big)dY_u$$
(9)

which completes the proof.

(b) Similarly we prove by

$$d\mathbf{Sig}_{[0,t]}^{(M)}(X) = \mathbf{Sig}_{[0,t]}^{(M)}(X) \otimes dX_t \tag{10}$$

(c) Since on each linear segment we have

$$\mathbf{Sig}_{\left[\frac{n}{N},\frac{n+1}{N}\right]}(X) = (1,\mathbf{x}_n,\frac{\mathbf{x}_n^{\otimes 2}}{2!},\cdots). \tag{11}$$

Then by the Chen's theorem we have

$$\mathbf{Sig}_{[0,N]}(X) = \bigotimes_{n \le N} (1, \mathbf{x}_n, \frac{\mathbf{x}_n^{\otimes 2}}{2!}, \cdots). \tag{12}$$

References

- [1] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788, 2016.
- [2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.