Mathematics for New Technologies in Finance Solution sheet 9

Through this exercise sheet, we let $E=\mathbb{R}^{d}, J$ an interval on \mathbb{R}, and denote $\operatorname{Sig}_{J}: \mathcal{C}_{0}^{1}(J, E) \rightarrow$ $\mathbf{T}(E)$ the signature map such that for all $X \in \mathcal{C}_{0}^{1}(J, E)$ and we let $\mathbf{S i g}_{J}^{(M)}$ denote the truncated signature map up to order $M: \operatorname{Sig}_{J}^{(M)}(X)=\left(1, \mathbf{s}_{1}, \cdots, \mathbf{s}_{M}\right) \in \mathbf{T}^{(M)}(E)$. Let $X \in \mathcal{C}_{0}^{1}([0, s], E)$ and $Y \in \mathcal{C}_{0}^{1}([s, t], E)$. The concatenated path $X \star Y \in \mathcal{C}_{0}^{1}([0, t], E)$ is defined by

$$
(X \star Y)_{u}= \begin{cases}X_{u} & u \in[0, s] \tag{1}\\ Y_{u}+\left(X_{s}-Y_{s}\right) & u \in[s, t]\end{cases}
$$

Exercise 9.1 (Basic properties of signatures)

(a) (Invariant under reparametrization) Let $X \in \mathcal{C}_{0}^{1}\left(\left[S_{1}, T_{1}\right], E\right)$ and $\tau:\left[S_{2}, T_{2}\right] \rightarrow\left[S_{1}, T_{1}\right]$ a non-decreasing surjective reparametrization. Then

$$
\begin{equation*}
\mathbf{S i g}_{\left[S_{2}, T_{2}\right]}\left(X_{\tau(\cdot)}\right)=\mathbf{S i g}_{\left[S_{1}, T_{1}\right]}(X) \tag{2}
\end{equation*}
$$

(b) Prove that neither is $\mathbf{S i g}_{[0,1]}$ surjective nor the range of which a linear subspace of $\mathbf{T}(E)$.
(c) Prove that signature of the augmented paths i.e. $\bar{X}_{t}=\left(t, X_{t}\right)$ is unique.
(d) Prove that signature satisfies the following equation

$$
\begin{equation*}
d \mathbf{S i g}_{[0, t]}(X)=\mathbf{S i g}_{[0, t]}(X) \otimes d X_{t} \tag{3}
\end{equation*}
$$

Solution 9.1

(a) Because line integral is invariant under reparametrization and the definition of
(b) Because

$$
\begin{equation*}
\operatorname{Sig}_{[0,1]}(X)_{1,2}+\operatorname{Sig}_{[0,1]}(X)_{2,1}=\operatorname{Sig}_{[0,1]}(X)_{1} \cdot \operatorname{Sig}_{[0,1]}(X)_{2} \tag{4}
\end{equation*}
$$

(c) Because signature is unique under tree like equivalent, so with one augmented coordinate as strictly increasing, the only tree like equivalent path is the augmented path it self .
(d)

$$
\begin{align*}
d \operatorname{Sig}_{\left[0, t_{1}\right]}(X) & =d\left(\int_{0}^{t_{1}} \cdots \int_{0}^{t_{m}} d X_{t_{m}}^{i_{m}} \ldots d X_{t_{1}}^{i_{1}}\right)_{\left(i_{1}, \ldots, i_{m}\right) \in\{1, \ldots, d\}^{m}} \\
& =\left(\int_{0}^{t_{2}} \cdots \int_{0}^{t_{m}} d X_{t_{m}}^{i_{m}} \ldots d X_{t_{2}}^{i_{2}}\right)_{\left(i_{2}, \ldots, i_{m}\right) \in\{1, \ldots, d\}^{m-1}}\left(d X_{t_{1}}^{i_{1}}\right)_{i_{1} \in\{1, \ldots, d\}} \tag{5}\\
& =\operatorname{Sig}_{\left[0, t_{1}\right]}(X) \otimes d X_{t_{1}}
\end{align*}
$$

Exercise 9.2 (Chen's identity)

(a) Prove the Chen's identity:

$$
\begin{equation*}
\mathbf{S i g}_{[r, t]}(X \star Y)=\mathbf{S i g}_{[r, s]}(X) \otimes \mathbf{S i g}_{[s, t]}(Y) \tag{6}
\end{equation*}
$$

(b) Prove the Chen's identity for truncated signature:

$$
\begin{equation*}
\mathbf{S i g}_{[r, t]}^{(M)}(X \star Y)=\operatorname{Sig}_{[r, s]}^{(M)}(X) \otimes \operatorname{Sig}_{[s, t]}^{(M)}(Y) \tag{7}
\end{equation*}
$$

(c) Let X be linear on $[n, n+1]$ and let $X_{n+1}-X_{n}=\mathbf{x}_{n}$ for $n \in \mathbb{N}$, use Chen's identity to prove that

$$
\begin{equation*}
\operatorname{Sig}_{[0, N]}(X)=\bigotimes_{n \leq N}\left(1, \mathbf{x}_{n}, \frac{\mathbf{x}_{n}^{\otimes 2}}{2!}, \cdots\right) \tag{8}
\end{equation*}
$$

Solution 9.2

(a) By the uniqueness of the solution of linear ode. we only need to check that $\operatorname{Sig}_{[r, s]}(X) \otimes$ $\operatorname{Sig}_{[s, t]}(Y)$ follows the dynamic. On $[0, s]$ it is obvious and on $u \in[s, t]$
$d\left(\mathbf{S i g}_{[r, s]}(X) \otimes \mathbf{S i g}_{[s, u]}(Y)\right)=\mathbf{S i g}_{[r, s]}(X) \otimes\left(\operatorname{Sig}_{[s, u]}(Y) d Y_{u}\right)=\left(\operatorname{Sig}_{[r, s]}(X) \otimes \mathbf{S i g}_{[s, u]}(Y)\right) d Y_{u}$
which completes the proof.
(b) Similarly we prove by

$$
\begin{equation*}
d \mathbf{S i g}_{[0, t]}^{(M)}(X)=\operatorname{Sig}_{[0, t]}^{(M)}(X) \otimes d X_{t} \tag{10}
\end{equation*}
$$

(c) Since on each linear segment we have

$$
\begin{equation*}
\operatorname{Sig}_{\left[\frac{n}{N}, \frac{n+1}{N}\right]}(X)=\left(1, \mathbf{x}_{n}, \frac{\mathbf{x}_{n}^{\otimes 2}}{2!}, \cdots\right) \tag{11}
\end{equation*}
$$

Then by the Chen's theorem we have

$$
\begin{equation*}
\operatorname{Sig}_{[0, N]}(X)=\bigotimes_{n \leq N}\left(1, \mathbf{x}_{n}, \frac{\mathbf{x}_{n}^{\otimes 2}}{2!}, \cdots\right) \tag{12}
\end{equation*}
$$

References

[1] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature method in machine learning. arXiv preprint arXiv:1603.03788, 2016.
[2] Terry J Lyons, Michael Caruana, and Thierry Lévy. Differential equations driven by rough paths. Springer, 2007.

