Goal: prove that Hofer's metric on $\mathbb{R}^{2 n}$ is non-degenerate
$\rightarrow$ we introduce Lagrangian submanifolds.

## Defiuition

het $\left(M^{24}, \Omega\right)$ a symplectic manifold and let LCM a submaniyold
We call L Lagrangian if $\cdot \operatorname{dim} L=\frac{1}{2} \operatorname{aim} M=u$

$$
\left.\cdot \Omega\right|_{T L} \equiv 0
$$

An embedding (or immersion) $\varphi: L^{n} \rightarrow M^{2 n}$ is called Lagrangian if $\varphi^{*} \Omega \equiv 0$.

## Example

1) curves on surfaces:

Let $\left(H^{2}, \Omega\right)$ be an oriented surface with an area yorm
Cloim: Every curve is Lagrangian
Proof: The tangent space to a curve is one-dimensional

- $\Omega$ vamishes when it's evamated on two proportiond vectors.

2) Let $N^{n}$ be a any manifold

Consider the cotaugent bunale $M=T^{*} N$ of $N$ with the natural projection $\pi: T^{*} N \rightarrow N,(p, q) \longmapsto q$
We define the foulowing 1 -Yorm $\lambda$ on $M$ which is called the Liouvine Yorm.
For $q \in N, \quad(p, q) \in T^{*} N$ and $\xi \in T_{(p, q)} T^{*} N$ we set $\lambda(\xi)=\left\langle p, \pi_{*} \xi\right\rangle$, where $\langle\cdot$,$\rangle is the natural pairing$
between $T^{*} N$ and $T N$.
caim: $\Omega=d \lambda$ is a symplectic form on $T^{*} M$.
Prooq: We use local coordinates ( $p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{4}$ ) on $T^{*} N$ and we write $\xi=\left(\dot{p}_{1}, \ldots, \dot{p}_{n}, \dot{q}_{1}, \ldots, \dot{q}_{n}\right)$. So $\pi_{*} \xi=\left(\dot{q}_{1},-\dot{q}_{u}\right)$.
With this notation we have $\left\langle p, \pi_{*} \xi\right\rangle=\sum p_{i} \dot{q}_{i}$ and then follows $\lambda(\xi)=\sum p_{i} d q_{i}$. Therefore $\Omega=d \lambda=\sum d p i \wedge d q_{i}$, which is the standard syumplectic yorm on $\mathbb{R}^{2 n}$.
3) Lagrangiau suspension:

Let $L C(H, \Omega)$ be a hagrangian submaniyold.
Consider a loop of Hamittonian diffeomorphism $\left\{h_{t}\right\}, t \in S^{1}$, $h_{0}=h_{1}=1$, generated by a 1-periodic Hamiltomian quuction $\#(x, t)$.
These are going to be usefull later

Let $M \times T^{*} S^{1}$ be a symplectic manifold with symplectic form $\sigma=\Omega+d r \wedge d t$ $M$ as before and $(r, t)$ are the coordinates on $T^{*} S^{1}=\mathbb{R} \times S^{1}$.
Then

$$
\begin{aligned}
\phi: L \times S^{1} & \rightarrow M \times T^{*} S^{1} \\
(x, t) & \mapsto\left(n_{t}(x),-H\left(n_{t}(x), t\right), t\right)
\end{aligned}
$$

is a hagrangian embedoling

## Proof:

Enough to show: $\phi^{*} \sigma$ vamishes on pairs $\left(\xi, \xi^{\prime}\right)$ and on pairs $\left(\xi, \frac{\partial}{\partial t}\right)$ for $\xi, \xi^{\prime} \in T L$ and $\frac{\partial}{\partial t} \in T s^{1}$. We only heed these to show these two pairs because the other possible pairs vamisnes by autisymmetry.

By coupoting, we obtain: $\phi_{*} \xi=\left.\frac{\partial}{\partial_{s}} \phi(\gamma(s), t)\right|_{s=0} \quad$ yar $\gamma:(-\varepsilon, \varepsilon) \rightarrow L, \dot{\gamma}(0)=\xi$ and $\gamma(s)=x$

$$
=\frac{\partial}{\partial s}\left(h_{t}(\gamma(s)),-\left.H_{t}\left(h_{t}(\gamma(s)), t\right)\right|_{s=0}\right.
$$

$$
\begin{aligned}
& \left.\left.=\left(d h_{t}\right)_{\gamma(0)}(\xi)-\left(d+H_{t}\right)_{t \in r(0))}\left(d h_{t}\right)(\xi)\right) \frac{\partial}{\partial r}\right) \text { using the pusuyoward } \\
& =h_{t} \xi-\left\langle d H_{t}, h_{t} \xi\right\rangle \frac{\partial}{\partial r}
\end{aligned}
$$

and analogovsly

$$
\phi_{*} \xi^{\prime}=h_{t *} \xi^{\prime}-\left\langle d H_{t}, h_{t *} \xi^{\prime}\right\rangle \frac{\partial}{\partial r}
$$

$\begin{aligned} \Rightarrow \phi^{*} \sigma\left(\xi, \xi^{\prime}\right)=\sigma\left(\phi_{*} \xi, \phi_{*} \xi^{\prime}\right)=\Omega\left(h_{t *} \xi, h_{t *} \xi^{\prime}\right)=\Omega\left(\xi, \xi^{\prime}\right) & =0 \\ & L_{\text {Lagraugiau }}\end{aligned}$

- $\phi_{*} \frac{\partial}{\partial t}=\frac{d}{d t}\left(n_{t}(x),-H_{t}\left(h_{t}(x)\right), t\right)$

$$
\begin{aligned}
& \Gamma \text { shew gradient of } H_{t} \\
= & \widetilde{\operatorname{sgrad}} H_{t}\left(h_{t}\right)-\left(\frac{\partial H}{\partial t}\left(h_{t}(x)\right)-d H_{t}\left(\operatorname{sgrad} H_{t}\left(h_{t}\right)\right) \frac{\partial}{\partial r}+\frac{\partial}{\partial r}\right.
\end{aligned}
$$

$$
=\text { sgrad } H_{t}-\left(\left\langle d H_{t}, \text { sgrad } H_{t}\right\rangle+\frac{\partial H}{\partial t}\right) \frac{\partial}{\partial r}+\frac{\partial}{\partial t}
$$

$$
=\text { sqrad }_{t} H_{t}-\frac{\partial H}{\partial t} \frac{\partial}{\partial r}+\frac{\partial}{\partial t}
$$

$$
\begin{aligned}
\Rightarrow \phi^{*} \sigma\left(\xi, \frac{\partial}{\partial t}\right) & =e\left(h_{t *} \xi, \text { sgrad } H_{t}\right)+d r \wedge d t\left(-\left\langle d H_{t}, h_{t *} \xi\right\rangle \frac{\partial}{\partial r}, \frac{\partial}{\partial t}\right) \\
& =\Omega\left(h_{t *} \xi, \text { sgrad } H_{t}\right)-\left\langle d H_{t}, h_{t *} \xi\right\rangle \\
& =d H_{t}\left(h_{t *} \xi\right)-\left\langle d H_{t}, h_{t *} \xi\right\rangle
\end{aligned}
$$

$$
=0
$$

Then $\phi$ is a hagrangian embedoing

Let $L \subset\left(\mathbb{R}^{2 n}, d p \wedge d q\right)$ be a Lagrangian submani fold
Let $\lambda=p_{1} d q_{1}+\ldots+p_{n} d q_{n}$ the Liouville form, and $\lambda_{I T L}$ a restriction to $L$
Note: $d\left(\lambda_{I T L}\right)=\Omega I_{T L}=0$
Lagrangian submamiyold

## Definition

The cohomology class $\lambda_{L} \in H^{1}(L, \mathbb{R})$ of this closed 1 -form is called hiovville class of the Lagrangian submanifold $L$.
similarly, for a Lagrangian embedding or immersion $\phi: L \rightarrow \mathbb{R}^{24}$,
we define the Liouville class as $\left[\phi^{k} \lambda\right]$

Geometrical interpretation: (of the hiouvilue class of a Lagrangian submanifold)
Let $H_{1}(\mathbb{R})$ be a 1 -cycle.
We can then find 0 -chain $\Sigma$ in $\mathbb{R}^{2 n}$ with $\partial \Sigma=a$.
$\left(\lambda_{L}, a\right)=\int_{a} \lambda_{L}=\int_{\Sigma} \Omega$
Note: independent of $\Sigma$.
( $\left.\lambda_{L}, a\right)$ is called the symplectic area of $a$.
$\lambda_{L}$ is invariant under symplectomorplissus of $\mathbb{R}^{2 u}$, i.e. $f^{*} \lambda_{\varphi(L)}=\lambda_{L}$

## Theorem A

Assume that $L \subset \mathbb{R}^{2 n}$ is a closed Lagrangian submanifold.
Then $\lambda_{L} \neq 0$.
Antonio will prove it next time
$\triangle$ For a Lagrangian immersions this statement is not true in general.

## Example case $n=1$ :

Any closed embedoled curve bounds a subset of positive area.
But, if we take for example the immersed figure eight wive can bound aset with zero area.

## Definition

A closed Lagrangian submanifold $L \subset\left(\mathbb{R}^{2 n}, \omega\right)$ is called rational
if $\lambda_{L}\left(H_{1}(L ; \mathbb{Z})\right) \subset \mathbb{R}$ is a discrete subgroup.
We denote its positive generator by $\gamma^{(L)}$.

Example: the split torus (which is Lagrangian) $L=S^{1}(r) \times \ldots \times S^{1}(r) \subset \mathbb{R}^{2 n}$ is rational
Proof: each $S^{1}(r)$ has a symplectic area $\pi r^{2}$, and then $\gamma(L)=\pi r^{2}$.

However, the torus $S^{1}(1) \times S^{1}(\sqrt[3]{2}) \subset \mathbb{R}^{4}$ is not rational, since the symplectic areas of the two circles are $\pi$ and $\sqrt[3]{4} \pi$ and they generate a dense subgroup of $\mathbb{R}$.

Let $L \subset B^{2}(r) \times \mathbb{R}^{2 n-2}$ be a closed rational Lagrangian submaniyold Then $\gamma(L) \leq \pi r^{2}$.

Antonio will prove it next time

The condition that $L$ is embedded is necessary
Ex: this is an immersed Lagrangian submanifold of arbitrary symplectic area

Theorem C:
Let $L \subset \mathbb{R}^{2 n}$ a closed rational Lagrangian submanifold.
Then $e(L) \geqslant \frac{1}{2} \gamma(L)$
Proof: Youlows from the B, see below.

Rh: this result gives a lower bound for the displacement energy enL) of a rational Lagrangian submaniford $L$ writ Ho fer's metric.
consequences:
Non-degeneracy of Hofer's metric:
Thu. $c$ implies that Holler's metric on $\operatorname{Ham}\left(\mathbb{R}^{2 n}, w\right)$ is non-degenerate.
Proof: Let $B^{2 n}(r)=\left\{p_{1}^{2}+\ldots+p_{n}^{2}+q_{1}^{2}+\ldots q_{n}^{2} \leqslant r^{2}\right\}$. Each ball $B^{2 n}(r)$ contains a rational split torus

$$
s^{1}\left(\frac{r}{\sqrt{n}}\right) \times \ldots \times s^{1}\left(\frac{r}{\sqrt{n}}\right)=\left\{p_{1}^{2}+q_{1}^{2}=\frac{r^{2}}{n}, \ldots, p_{n}^{2}+q_{n}^{2}=\frac{r^{2}}{n}\right\} .
$$

Thus $e\left(B^{2 n}(r)\right) \geqslant \frac{\pi r^{2}}{2 n}>0 \underset{\text { week }}{\underset{\text { Last }}{\text { cos }}}$ non-degeneracy of $\rho$.
[Actually Hofer proved $e\left(B^{2 n}(r)\right)=\pi r^{2}$.]

Good of this section: prove thu $C$ using the $B$.

Let $p$ is a biinvariant psendo-distance on $\operatorname{Ham}(M, \Omega)$ and let $A$ a bounded subset of $M$. Definition

The dispacement energy of $A$ is given by
$e(A)=\inf \{p(11, q) \mid \quad q \in \operatorname{Ham}(M, \Omega), \varphi(A) \cap A=\phi\}$

- The set of $\varphi$ may be empty
- convention: inf $\phi=\infty$
- if $e(A) \neq 0$ we say that $A$ has positive displacement energy

Properties: - monotone: $A \subset B \Rightarrow e(A) \leqslant e(B)$
(ship) .invariant: $e(A)=e(f(A)$ ) for every Hamiltonian diffeomorphsm of of $M$ lie. $\forall \varphi \in \operatorname{Ham}(M, \omega)$
To prove thu $C$, we proceed in 5 steps

Step 1: Let $L$ be a closed rational Lagrangian submanifold. Let $h_{t}, t \in[0,1]$ be a path of Hamiltonian diffeomorplism sit. $h_{0}=1$ and $h_{1}(L) \cap L=\phi$.
Fix $\varepsilon>0$
we on we can assume that $h_{t}=11$ for $t \in[0, \varepsilon]$ and $h_{t}=h_{1}$ for $t \in[1-\varepsilon, 1]$

Indeed, this can be achieved by suitable reparam. of the flow which preserves the length
Ex: Let $\left\{q_{t}\right\}, t \in[0, a]$ be a Hamiltonian flow generated by a normalized Hamiltonian $F(x, t)$
Then $\left\{\varphi_{a t}\right\}, t \in[0,1]$ is again a Hamiltonian $\varphi$ foo generated by $a F(x, a t)$
In fact, every Hamiltonian diffeomorplism is a time-one map of some Hamiltonian

Let $H(x, t)$ the corresponding Hamiltonian function
set $l=$ length $\left\{h_{t}\right\}=\int_{0}^{1} \max _{x} H_{t}-\min _{x} H_{t} d t$
t.s: $l \geqslant \frac{1}{2} \gamma(L) \quad($ thu $C$.
step 2: We create a $\log$ of Hamiltonian difffeomorphisms for $t \in[0,2]$

$$
g_{t}= \begin{cases}n_{t} & t \in[0,1] \\ n_{2-t} & t \in[1,2]\end{cases}
$$

with Hamiltonian

$$
G(x, t)= \begin{cases}H(x, t) & t \in[0,1] \\ -H(x, 2-t) & t \in[1,2]\end{cases}
$$

claim: $\int_{0}^{2} G\left(g_{t}(x), t\right) d t=0 \forall x$. (we use it later $A$ )
Proof: $\int_{0}^{2} G\left(g_{t}(x), t\right) d t=\int_{0}^{1} G(g t(x), t) d t+\int_{1}^{2} G(g t(x), t) d t$
(ship)

$$
\begin{aligned}
& =\int_{0}^{1} H\left(h_{t}(x), t\right) d t+\int_{1}^{2}-H\left(n_{2-t}, 2-t\right) d t \\
& =\int_{0}^{1} H\left(n_{t}(x), t\right) d t-\underbrace{\int_{1}^{2} H\left(n_{2-t}, 2-t\right) d t}_{1} \tilde{t}=2-t, d \tilde{t}=-d t, \int_{1}^{1} H\left(n_{\tilde{t}}, \tilde{t}\right)(t d t) \\
& \quad \int_{1}^{0}=-\int_{0}^{1} \\
& =0
\end{aligned}
$$

We now apply Ex (Lagrangian suspension) and we get a new Lagrangian svbmamifold $L^{\prime} \subset \mathbb{R}^{2 n} \times T^{*} S^{1}$ as the image of $L \times S^{1}$ under the mapping

$$
(x, t) \longmapsto\left(g_{t}(x),-G\left(g_{t}(x), t\right), t\right)
$$

Note: here $S^{1}=\mathbb{R} / 2 \pi$

We define two function: $\quad a_{+}(t)=-\min _{x} G(x, t)+\varepsilon \quad \& \quad a_{-}(t)=-\max _{x} G(x, t)-\varepsilon$
$\Rightarrow L^{\prime} \subset \mathbb{R}^{2 n} \times \subset \subset \mathbb{R}^{2 n} \times T^{*} S^{1}$.


Step 3:
Goal: pass from $\mathbb{R}^{2 n} \times T^{*} S^{1}$ to $\mathbb{R}^{2 n} \times \mathbb{R}^{2}$.
In order to do that we consider a particular symplectic immersion $\theta: C \rightarrow \mathbb{R}^{2}$ (Gromov's figure eight trick)
$\operatorname{arca}(c)=\int_{0}^{2}\left(a_{+}(t)-a_{-}(t)\right) d t \stackrel{D E F}{=} \int_{0}^{2}(-\min (G(x, t))+\varepsilon+\max (G(x, t))+\varepsilon) d t$

$$
\begin{aligned}
= & \int_{0}^{2}(\max (G(x, t))-\min (G(x, t))+2 \varepsilon) d t=\int_{0}^{2}(\max (G(x, t))-\min (G(x, t)) d t+4 \varepsilon \\
=\int_{0}^{1} \max (H(x, t))-\min (H(x, t)) d t & +\int_{1}^{2} \max (-H(x, 2-t))-\min (-H(x, 2-t)) d t+4 \varepsilon \\
& =\int_{0}^{1} \max (-H(x, \tilde{t}))-\min (-H(x, \tilde{t})) d \tilde{t} \quad \tilde{t}=2-t \int_{1}^{2}-\int_{1}^{0}=-\int_{0}^{1} d t=-d \tilde{t} \\
& =\int_{0}^{1}-\min (H(x, \tilde{t}))+\max (H(x, \tilde{t})) d \tilde{t}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{0}^{1}\left(\max _{x} H_{t}-\min _{x} H_{t}\right) d t+4 \varepsilon \\
& =2 l+4 \varepsilon
\end{aligned}
$$

$\Rightarrow$ the image $\theta(C)$ can be enclose by a disc $B$ of area $2 l+10 \varepsilon$

## Step 4

Consider the symplectic immersion $\theta^{\prime}=i d \times \theta: \mathbb{R}^{2 n} \times C \rightarrow \mathbb{R}^{2 n} \times \mathbb{R}^{2}$

- $\theta^{\prime}\left(L^{\prime}\right) \subset \mathbb{R}^{2 n+2}$ is an immersed Lagrangian submanifold and $\theta^{\prime}\left(L^{\prime}\right) \subset \mathbb{R}^{2 n} \times B$

Clam: : $L^{\prime \prime}=\theta^{\prime}\left(L^{\prime}\right)$ is embedeled
Proof note: the only place where double points could occur is in the thin necks.
For $t \in[-\varepsilon, \varepsilon]: g_{t}(L)=h_{0}(L) \stackrel{1}{=} L$
\& for $t \in[1-\varepsilon, 1+\varepsilon]: g_{t}(L)=h_{1}(L)$, and by assumption on step $1 h_{\wedge}(L) \wedge L=\phi$ $\Rightarrow$ No double points and $\theta^{\prime}$ is an embedding.

## Step 5

t.s: L" rational (so we can apply thu B)

We will prove $\gamma(L)=\gamma\left(L^{\prime \prime}\right)$
Let $\phi$ be the composition of the Lagrangian suspension and $\theta^{\prime}$,

$$
\begin{aligned}
& \phi: L \times S^{1} \xrightarrow{\text { L. sup. }} \mathbb{R}^{2 n} \times T^{*} S^{\wedge} \xrightarrow{\theta^{\prime}} \mathbb{R}^{2 n}\left(p_{1}-1, p_{n}, q_{1},-q_{n}\right) \times \mathbb{R}^{2}(p, q) \\
& (x, t) \longmapsto\left(g_{t}(x), \theta\left(-G\left(g_{t}(x), t\right), t\right)\right)
\end{aligned}
$$

Note: $L^{\prime \prime}$ is the image of $L_{x} S^{1}$ under $\phi$
The group $\left.H_{1} / L^{\prime \prime}\right)$ is generated by the gales of the form $\phi(b)$ where $b$


- Case 1: $\phi(b)=b x\{\theta(0,0)\} \Rightarrow$ symplectic area of $b$ and $\phi(b)$ coincide
- case 2: Let $\alpha$ be the orbit $\left\{g_{t} x_{0}\right\}, t \in[0,2]$.

Note: $\int_{b} \phi^{*}\left(p_{1} d q_{1}+\ldots+p_{n} d q_{n}+p o l q\right)=\int_{\alpha} p_{1} d q_{1}+\ldots+p_{n} d q_{n}+\int \theta^{*} p d q$ $=0+\int r d t=-\int_{0}^{2} G\left(\rho_{t}\left(x_{0}\right), t\right) d t \stackrel{ }{=} 0$
$\Rightarrow L^{\prime \prime}$ is a rational Lagrangian subuyd with $\gamma(L)=\gamma\left(L^{\prime \prime}\right)$.
Since $L^{\prime \prime} \subset \mathbb{R}^{2 n} \times B$, by thu $B: \gamma\left(L^{\prime \prime}\right) \leqslant \operatorname{thm} B \operatorname{area}(B)=2 e+10 \varepsilon \forall \varepsilon>0$.

$$
\Rightarrow e(L) \geqslant \frac{1}{2} \gamma(L)
$$

## Second book

Let $(M, \omega)$ a symplectic manifold and $L C M$ be a compact hagrangian submaniyold Then there exists a neighbourkood $\mathcal{N}\left(L_{0}\right) \subset T^{*} L$ of the zero section, a nbhd $V \subset M$ of $L$, and a diffeomorphism $\phi: \mathcal{N}\left(L_{0}\right) \longrightarrow V$ s.t. $\phi^{*} \omega=-d \lambda$

$$
\phi_{I L}=i d
$$

where $\lambda$ is the canonical 1 - form on $T^{+} L$

Prooq:
The proof is based on the yact that the normal bundle of $L$ in $M$ is isomorphic to the taugent bundle
To deqiue such isomorplusm, we use a compatible complex structure $J$ on the taugent bundle TM (exists by a Prop.)

By an auother Proposition we have that the subspace $J_{q} T_{q} L \subset T_{q} M$ is the orthogonal complement of $T_{q} L$ wrt the metric $g_{J}$ induced by $J$, and is a Lagrangian subspace of ( $T q M, w$ ).

Let $\Phi_{q}: T_{q}^{*} L \rightarrow T_{q} L$ the isomorphism induced by the metric $g_{J}$, i.e. $g_{J}\left(\Phi_{q}\left(v^{*}\right), v\right):=v^{*}(v), v \in T_{q} L$

Now consider $\phi: T^{*} L \rightarrow M$

$$
\begin{aligned}
\phi\left(q, v^{*}\right):= & \exp _{q}\left(J_{q} \Phi_{q}\left(v^{*}\right)\right) \\
& {\left[\begin{array}{l}
\text { exponential map of the Riemanuiau metric } g_{J}
\end{array}\right.}
\end{aligned}
$$

Then for $v=\left(v_{0}, v_{1}^{*}\right) \in T_{q} L \oplus T_{q}^{*} L=T_{(q, 0)} T^{*} L$ we have $d \phi_{(q, 0)}(v)=v_{0}+J_{q} \Phi_{q}\left(v_{1}^{*}\right)$

$$
\begin{aligned}
\Longrightarrow \phi^{*} \omega_{(q, 0)}\left(v_{1} w\right) & =\omega_{q}\left(v_{0}+J_{q} \Phi_{q}\left(v_{1}^{*}\right), \omega_{0}+J_{q} \Phi_{q}\left(w_{1}^{*}\right)\right) \\
& =\omega_{q}\left(v_{0}, J_{q} \Phi_{q}\left(w_{1}^{*}\right)\right)-\omega_{q}\left(w_{0}, J_{q} \Phi_{q}\left(v_{1}^{*}\right)\right) \\
& =g_{J}\left(v_{0}, \Phi_{q}\left(w_{1}^{*}\right)\right)-g_{J}\left(\omega_{0}, \Phi_{q}\left(v_{1}^{*}\right)\right) \\
& =\omega_{1}^{*}\left(v_{0}\right)-v_{1}^{*}\left(\omega_{0}\right) \\
& =-a \lambda_{(q, 0)}\left(v_{1} w\right)
\end{aligned}
$$

$\Rightarrow$ the 2 -Yorm $\phi^{*} \omega \in \Omega^{2}\left(T^{*} L\right)$ agrees with the canonical 1 -Yorm-d $d$ can on the zero section

Done by Moser isotopy

Let $M$ be a $2 n$-dim. smooth myd and $Q \subset M$ be a compact submifd.
Suppose that $\omega_{0} . \omega_{1} \in \Omega^{2}(M)$ are cosed 2-yorms s.t. at each point 9 of $Q$ the Yorms $\omega_{0}$ and $\omega_{1}$ are equal and non-degenerate on $T_{Q} M$. Then $\exists$ open nbhds $\mathcal{N}_{0}$ and $\mathcal{N}_{1}$ of $Q$ aud a diffeamorphism $\psi: \mathcal{V}_{0} \rightarrow \mathcal{N}_{1}$ s.t. $\psi_{Q}=$ id $\psi^{*} \omega_{1}=\omega_{0}$

