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The main references of this work is the books “The Geometry of the Group of Sym-

plectic Diffeomorphisms” by L. Polterovich.

In this pages we prove the theorem which states that γ(L) ≤ πr2 for any closed

rational Lagrangian submanifold L ⊂ B2(r) × R2n−2. The proof is based on Gromov’s

techniques of pseudo-holomorphic discs.

1 Introducing the ∂̄-operator

Identify R2n(p1, q1, . . . , pn, qn) with

Cn(p1 + iq1, . . . , pn + iqn) = Cn(w1, . . . , wn).

Denote by ⟨ , ⟩ the Euclidean scalar product. The three geometric structures we get in

this way are the Euclidean, the symplectic and the complex structure. They are related

by the following formula

⟨ξ, η⟩ = ω(ξ, iη)

where ω = dp1 ∧ dq1 + · · ·+dpn ∧ dqn. We will check this formula in the case n = 1. Let

ξ = (p′, q′) and η = (p′′, q′′). Then

dp ∧ dq(ξ, iη) = dp ∧ dq

((
p′

q′

)
,

(
−q′′

p′′

))
= p′p′′ + q′q′′ = ⟨ξ, η⟩.

In what follows we will measure areas and lengths using the Euclidean metric. Consider

the unit disc D ⊂ C with coordinate z = x+ iy.

Definition 1.1. For a smooth map f : D → Cn we define the ∂̄-operator,

∂̄ : C∞(D,Cn) → C∞(D,Cn),

f 7→ ∂̄f =
1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Example 1.1. Let f : C → C, z 7→ z̄. So f(x, y) = x − iy and ∂̄f = 1
2(1 + 1) = 1. We

observe that ∂̄f = ∂f
∂z̄ .

Let us introduce two useful geometric quantities associated with a map f : D → Cn.

Definition 1.2. The symplectic area of f : D → Cn is given by

ω(f) =

∫
D
f∗ω

and the Euclidean area of f is given by

Area(f) =

∫
D

√〈
∂f

∂x
,
∂f

∂x

〉〈
∂f

∂y
,
∂f

∂y

〉
−
〈
∂f

∂x
,
∂f

∂y

〉2

dxdy.
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Proposition 1.1. (i) Area(f) ≤ 2

∫
D
|∂̄f |2 dxdy + ω(f),

(ii) Area(f) ≥ |ω(f)|.

Proof. (i) Given ξ, η ∈ Cn we have the following inequality:√
|ξ|2|η|2 − ⟨ξ, η⟩2 ≤ |ξ||η| ≤ 1

2

(
|ξ|2 + |η|2

)
.

But

1

2
|ξ + iη|2 + ω(ξ, η) =

1

2

(
|ξ|2 + |η|2

)
+ ⟨ξ, iη⟩+ ⟨ξ,−iη⟩ = 1

2

(
|ξ|2 + |η|2

)
,

so we get √
|ξ|2|η|2 − ⟨ξ, η⟩2 ≤ 1

2
|ξ + iη|2 + ω(ξ, η).

So, putting ξ = ∂f
∂x and η = ∂f

∂y , we get

Area(f) ≤
∫
D

1

2

∣∣∣∣∂f∂x + i
∂f

∂y

∣∣∣∣2 + ω

(
∂f

∂x
,
∂f

∂y

)
dxdy = 2

∫
D
|∂̄f |2 dxdy + ω(f).

(ii) If η ̸= 0 note that η, iη are orthogonal i.e. ⟨η, iη⟩ = 0. Projecting ξ on η and iη we

get 〈
ξ,

η

|η|

〉2

+

〈
ξ,

iη

|iη|

〉2

≤ |ξ|2

Since |η| = |iη| the above reads

⟨ξ, η⟩2 + ω(ξ, η)2 ≤ |ξ|2|η|2

hence

|ω(ξ, η)| ≤
√
|ξ|2|η|2 − ⟨ξ, η⟩2.

So

Area(f) ≥
∫
D

∣∣∣∣ ω(∂f

∂x
,
∂f

∂y

)∣∣∣∣ dxdy ≥
∣∣∣∣∫

D
ω

(
∂f

∂x
,
∂f

∂y

)
dxdy

∣∣∣∣ = |ω(f)|.

2 The boundary value problem

Definition 2.1. Let (M2n,Ω) be a symplectic manifold and let L ⊂ M be a submanifold.

We say that L is a Lagrangian submanifold if dimL = 1
2 dimM = n and Ω|TL ≡ 0.

An embedding (or immersion) f : Ln → M2n is called Lagrangian if f∗Ω ≡ 0.

Let L ⊂ Cn be a closed Lagrangian submanifold and let g : D × Cn → Cn be a

smooth map which is bounded together with all its derivatives. Fix a homology class α ∈
H2(Cn, L). Consider the following problem. Find a smooth map f : (D, ∂D) → (Cn, L)

such that {
∂̄f(z) = g(z, f(z))

[f ] = α.
(P (α, g))
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Example 2.1. If g = 0, α = 0 then the space of solutions of P (0, 0) consists of the

constant mappings f(z) ≡ w for w ∈ L. To see this first observe that ω(f) = 0. Indeed,

since α = 0 and L is Lagrangian, the curve f(∂D) bounds a 2-chain in L with zero

symplectic area. This chain together with f(D) forms a closed surface in Cn. Since ω is

exact, the symplectic area of this surface vanishes. Therefore ω(f) = 0. Further, since

g = 0 we get that ∂̄f = 0. So the first part of previous proposition yields Area(f) = 0

and hence ∂f
∂x is parallel to ∂f

∂y . On the other hand ∂f
∂x = −i∂f∂y and therefore ∂f

∂x ⊥ ∂f
∂y .

Consequently ∂f
∂x = ∂f

∂y = 0. So f is a constant map and because of the boundary condition

its image lies in L.

Assume now that we have a sequence of functions {gn}n∈N which C∞-converges to

some function g. Let fn be the solutions of the corresponding problems P (α, gn). Gro-

mov’s famous compactness theorem states that either

(i) {fn}n∈N contains a subsequence that converges to a solution of P (α, g) or

(ii) bubbling off takes place.

In order to explain what bubbling off is we introduce the concept of a cusp solution.

Definition 2.2. Consider the following data:

1. a decomposition α = α′ + β1 + · · ·+ βk, where ∀j ∈ {1, . . . , k} : βj ̸= 0;

2. a solution f of P (α′, g);

3. solutions hj of P (βj , 0), j ∈ {1, . . . , k}, called pseudo-holomorphic discs.

This object is called a cusp solution of P (α, g) and f(D)∪h1(D)∪ · · · ∪hk(D) is called

its image.

The bubbling off phenomenon means that there exists a subsequence of {fn}n∈N which

converges to a cusp solution of P (α, g). The only feature of this convergence which is

important for our purposes is the continuity of the Euclidean area:

Area(fn) −→ Area(f) +
k∑

j=1

Area(hj).

The complete definition of the Gromov convergence is quite sophisticated, and we omit

it. An illustrating example will be given below.

Using the compactness theorem, Gromov established the following important result.

Proposition 2.1 (Persistence Principle). Consider a “generic” family gs(z, w), s ∈ [0, 1]

with g0 = 0. Then either P (0, gs) has a solution for all s or bubbling off occurs at some

s∞ ∈ [0, 1], i.e. there exists a subsequence sj → s∞ such that the sequence of solutions

of P (0, gsj ) converges to a cusp solution of P (0, gs∞).
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The word “generic” should be interpreted as follows. One can endow the space of

all families gs with an appropriate Banach manifold structure. Generic families form a

residual subset (that is a countable intersection of open and dense subsets) in this space.

In particular, every family gs becomes generic after an arbitrarily small perturbation.

3 An application to the Liouville class

Definition 3.1. Let L ⊂ (R2n, dp ∧ dq) be a Lagrangian submanifold. Consider the

restriction λ|TL of the Liouville form

λ = p1dq1 + · · ·+ pndqn

to L. The cohomology class λL ∈ H1(L,R) of this closed 1-form is called the Liouville

class of the Lagrangian submanifold L. A closed Lagrangian submanifold L ⊂ (R2n, ω)

is called rational if λL(H1(L;Z)) ⊂ R is a discrete subgroup. We will denote its positive

generator by γ(L).

Theorem 3.1. Let L ⊂ B2(r)×Cn−1 be a closed rational Lagrangian submanifold. Then

γ(L) ≤ πr2.

Proof. Suppose that L ⊂ B2(r)× Cn−1 is a closed Lagrangian submanifold. Take

g(z, w) = (σ, 0, . . . , 0) ∈ Cn

for some σ ∈ C.

Lemma 3.1. If |σ| > r then P (0, g) has no solutions.

Proof of lemma. Suppose that f is a solution of P (0, g) and denote by ϕ its first (complex)

coordinate. Thus
∂ϕ

∂x
+ i

∂ϕ

∂y
= 2σ.

Since L ⊂ B2(r)× Cn−1, we have that |ϕ|∂D| ≤ r. By Green’s theorem

2πσ =

∫
D

∂ϕ

∂x
+ i

∂ϕ

∂y
dxdy =

∫
S1

ϕ dy − iϕ dx.

Now we can write x + iy = e2πit and dx + idy = 2πie2πitdt, so dy − idx = 2πe2πitdt.

Therefore

2π|σ| = 2π

∣∣∣∣∫ 1

0
e2πitϕ(e2πit) dt

∣∣∣∣ ≤ 2πr

and hence |σ| ≤ r and the theorem is true by contrapositive.

Take now any σ with |σ| > r and apply the persistence principle to the family

gs = (sσ, 0, . . . , 0), s ∈ [0, 1].
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The previous lemma tells us that there is no solution for s = 1, so we have that for a

small perturbation of gs bubbling off takes place. For the sake of simplicity we assume

that it happens in gs itself. The general argument goes through without changes (make

estimates up to ε) and is left to the reader.

We have a sequence sn → s∞ ≤ 1 and a decomposition 0 = α+ β1 + · · ·+ βk, βj ̸= 0.

Let fn be the solutions of P (0, gsn), f∞ a solution of P (α, gs∞) and h1, . . . , hk holomorphic

discs with [hj ] = βj satisfying

Area(fn) −→ Area(f∞) +

k∑
j=1

Area(hj).

Applying both parts of proposition (1.1) and using the fact that the discs hj are holo-

morphic (∂̄hj = 0) we get that Area(hj) = ω(hj) ≥ γ(L). This inequality follows from

the fact that [hj ] = βj ̸= 0. From proposition (1.1) (ii) we deduce that

Area(f∞) ≥ |ω(f∞)| =

∣∣∣∣∣∣
k∑

j=1

ω(hj)

∣∣∣∣∣∣ ≥ γ(L).

Thus Area(f∞)+
∑k

j=1Area(hj) ≥ 2γ(L). On the other hand proposition (1.1) (i) implies

Area(fn) ≤ 2πs2n|σ|2 ≤ 2π|σ|2.

We use here that ω(fn) = 0 (since [fn] = 0) and ∂̄fn = gsn . Putting these two inequalities

together we get 2π|σ|2 ≥ 2γ(L). This is true for all σ with |σ| > r so we have πr2 ≥ γ(L),

which proves the theorem.

Theorem 3.2. Assume that L ⊂ R2n is a closed Lagrangian submanifold. Then the

cohomology class λL ̸= 0 i.e. L is not exact.

Proof. Consider a closed Lagrangian submanifold L ⊂ B2(r) × Cn−1. Then the lemma

above implies that the problem{
∂̄f(z) = (sσ, 0, . . . , 0), |σ| > r

[f ] = 0.

has no solution for s = 1. The persistence principle implies that bubbling off must

take place. This means that there exists a non-zero class β1 which is represented by a

holomorphic disc h1. Since h1 ̸= constant, we get ω(h1) > 0. Since we found a disc in Cn

spanned by h1(∂D) which has non-zero symplectic area, we conclude that λL ̸= 0.

4 An example

Let L = ∂D ⊂ C and let σ = 1. We wish to find all maps f : D → C such that

f(∂D) ⊂ ∂D and {
∂̄f(z, z̄) = s

[f |∂D] = 0.
(1)
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Since ∂f
∂z̄ = s then f(z, z̄) = sz̄+ u(z) where u is a holomorphic function on D. We claim

that the function φ := s+zu(z) is holomorphic, takes ∂D to ∂D and that φ|∂D has degree

1. Indeed,

zf(z, z̄) = s|z|2 + zu(z)

so

|z||f(z, z̄)| =
∣∣s|z|2 + zu(z)

∣∣ .
If |z| = 1 this reduces to |f(z, z̄)| = |φ| but |f(z, z̄)| = 1. So φ is a holomorphic function

taking ∂D to ∂D. Observe that deg f = 0 and deg z = 1 so the total degree, deg zf = 1

and hence degφ = 1. All such holomorphic functions are known as isometries of the

hyperbolic metric in the unit disc. They have the form

eiθ
1− ᾱz

z − α

for θ ∈ R, |α| > 1. Thus φ(z) = eiθ 1−ᾱz
z−α so

zu(z) =
eiθ + αs− z(s+ eiθᾱ)

z − α
.

Since u is holomorphic, it cannot have any poles, so eiθ + αs = 0 and hence α = − eiθ

s .

Now 1 < |α| =
∣∣1
s

∣∣ implies that s < 1 and that there are no solutions of (1) for s ≥ 1. So

bubbling off must occur at s = 1. For the sake of simplicity we put θ = 0. Then

u(z) = −
s− 1

s

z + 1
s

=
1− s2

sz + 1

so

fs(z, z̄) = sz̄ +
1− s2

sz + 1
.

When s → 1, fs(z, z̄) → z̄ for all z ̸= −1 and this convergence is uniform outside every

neighbourhood of −1. Consider the graphs of fs in D ×D ⊂ C× C. Set w = fs(z, z̄) so

(w − sz̄)(sz + 1) = 1− s2.

When s → 1 this equation goes to (w − z̄)(z + 1) = 0 and the graph becomes the union

of two curves

w = z̄,

z = −1.

Here w = z̄ is the graph of f∞ and {z = −1} corresponds to the holomorphic disc with

boundary on {−1} × L. Projecting onto the w-coordinate we get bubbling off. Indeed,

f∞(z) = z̄ is a solution of P (−a, 1) where a =
[
S1
]
and the holomorphic disc h(z) = z is

a solution of P (a, 0).

In order to visualize the bubbling off phenomenon we restrict to the real axes. Consider

the graphs of the corresponding functions fs(x) = sx + 1−s2

sx+1 for x ∈ [−1, 1]. We get the
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following picture. The graphs of fs converge to the union of two curves, the graph of the

real part of f∞ and the segment I = [−1, 1] which is the real part of the holomorphic disc

{−1} ×D.
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