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Goal

There is an open conjecture that for any symplectic manifold, the group Ham(M, Ω) of
Hamiltonian diffeomorphisms has infinite diameter with respect to Hofer’s metric

ρ(1, ϕ) = inf length{ft}

where the infimum is taken over all Hamiltonian paths {ft} with f0 = 1 and ϕF := f1 = ϕ.
Today, we will prove the conjecture for closed orientable surfaces.

Notation and Results

We start by recalling some of the notation and results from previous presentations. The
theorem numbering refers to the numbering from [Pol01].
We denote by F the space of smooth normalized periodic Hamiltonian funcitons F :
M × R → R. Every ϕ ∈ Ham(M, Ω) is the time-one flow diffeomorphism of a flow induced
by a Hamiltonian F ∈ F . H ⊆ F is the set of Hamiltonian that generate loops in Ham(M, Ω),
with Hc ⊆ H consisting of those that generate contractible loops. Here, contractible means
that there exists a homotopy [0, 1] × [0, 1] → Ham(M, Ω) from {ft} to the constant loop
at 1 with respect to the strong Whitney C∞-topology. We denote by Diff0(M) the path
connected component of diffeomorphisms of the surface M , and by Symp0(M, Ω) the path
connected componenent of symplectic diffeomorphisms of M .
For F ∈ F , we define its norm and length by

|||F ||| = max
t

(

max
x

F (x, t) − min
x

F (x, t)
)

and l(F ) = inf length{gt}

where the infimum is taken over all Hamiltonian flows {gt} which are homotopic to {ft} rel
endpoints.
Last week, we have seen a characterization of the norm and the length.
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Theorem (5.1.B/5.3.A). For every F ∈ F

ρ(1, ϕF ) = inf
H∈H

|||F − H||| and l(F ) = inf
H∈Hc

|||F − H|||

Note that if Ham(M, Ω) is simply connected, then ρ(1, ϕF ) = l(F ).

Starting Estimate

We begin by obtaining a bound for l(F ).

Proposition (7.1.A). Let L ⊆ M be a closed Lagrangian submanifold which has the stable
Lagrangian intersection property. Let F ∈ F , C > 0 such that

|F (x, t)| ≥ C for all x ∈ L, t ∈ S1

then l(F ) ≥ C.

Proof. Let H ∈ Hc. By Corollary 6.3.B, there exist y ∈ L, τ ∈ S1 such that H(y, τ) = 0.
Moreover, since F − H is normalized for all t, let z ∈ M be such that F (z, τ) − H(z, τ) = 0,
then

|||F − H||| = max
t

∥Ft − Ht∥

≥ max
x1

F (x1, τ) − H(x1, τ) − min
x2

F (x2, τ) − H(x2, τ)

If F (x, t) is positive on L × S1, choose (x1, x2) = (y, z). If F (x, t) is negative, choose
(x1, x2) = (z, y). In either case we get |||F − H||| ≥ C. Since this holds for all H ∈ Hc, it
follows

l(F ) = inf
H∈Hc

|||F − H||| ≥ C

The fundamental group

We wish to compute the fundamental group π1(Ham(M, ω)) in order to extend this estimate
for ρ(1, ϕF ). Unfortunately, not much is known about the group for general general
symplectic manifolds. Even in the simple example of R2n, π1(Ham(R2n)) is not known for
n ≥ 3. For closed surfaces however, the fundamental group can be computed. Before we
state the main theorem, we cover some preliminary results.
For a space X, denote by ι the inclusion

ι : X × {0} → X × [0, 1]
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Definition. Let p : E → B be a continuous map. We say that p has the Homotopy lifing

property with respect to a space X, if for any homotopy h : X × [0, 1] → B, such that
h0 = h ◦ ι can be lifted to a map h̃0 : X × {0} → E, there exists a lift h̃ : X × [0, 1] → E of
h.

X × {0} E

X × [0, 1] B

ι

h̃0

p
h̃

h

A Fibration is a map p : E → B satisfying the Homotopy Lifting property for all topological
spaces X. A Serre Fibration is a map p : E → B satisfying the Homotopy Lifting property
for all CW-complexes.

For example, the tangent bundle TM → M is a fibration. A covering is a fibration where
the homotopy lift is unique.

Lemma. Let B be the set of all area forms on M with total area 1. For ω ∈ X fixed, the
map

p : Diff0(M) → B, ϕ 7→ ϕ∗ω

is a Serre fibration.

Proof. Recall Moser’s stability theorem. It states that for every family {ωt} of symplectic
forms ωt with an exact derivative d

dt
ωt = dσt, there exists a family of diffeomorphisms

ϕt ∈ Diff(M) such that

ϕ∗
t ωt = ω0

In view of our definitions above, this is saying that the map p has the homotopy lifting
property for one-point space X = {∗}. By repeated application, one can show that the map
has the homotopy lifting property for the spaces [0, 1]n. Since CW-complexes can be built
by gluing together spaces of the form [0, 1]n, the result follows.

Corollary (A). The map π1(Symp0(M, Ω)) → π1(Diff0(M)) induced by the inclusion is
an isomorphism.

Since the map p : Diff0(M) → B is a Serre fibration, there is a long exact sequence

πn+1(B) → πn(F ) → π1(Diff0(M)) → πn(B) → πn−1(F ) → . . . → π0(Diff0(M))

where F is the fiber of the map p. But since that is just Symp0(M) and because the base
B is contractible, we obtain the desired isomorphism.
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Lemma (B). Let M be an oriented smooth closed surface.

(a) If M is the sphere or projective plane, then Diff(M) = Diff0(M) has SO(3) as strong
deformation retract.

(b) If M is the torus, then Diff0(M) has T
2 as strong deformation retract.

(c) If M has genus ≥ 2, then Diff0(M) is contractible.

Here, the subset SO(3) acts by rotation of the sphere and T
2 by translation on the torus.

A proof of this is given in [EE43] (Corollary p.21).

Theorem (7.2.A/7.2.B). Let (M, Ω) be a closed symplectic surface.

(a) If M = S2, the inclusion SO(3) → Ham(S2) induces an isomorphism of fundamental
groups.

(b) If M has genus g ≥ 1, then π1(Ham(M, Ω)) = 0.

We give a sketch of the proof, which is structured as follows: Consider the diagram

π1(Ham(M, Ω)) π1(Symp0(M, Ω))

π1(Diff0(M))

π1(SO(3)) π1(T2) π1({∗})

j

k

S2

T
2

g≥2
B

where the maps j, k are induced by inclusion and the maps in B are chosen depending of
the genus of the surface.
Corollary A shows that the map k is an isomorphism. Lemma B shows that the maps in
B (depending on the genus) are isomorphism.

In [MS98] (see Proposition 10.18 (i)), it is shown that the map j is injective.
This proves part (a) of the theorem and (b) for the case g ≥ 2.
It remains to handle the case of the torus. Fix a point y ∈ T

2 and consider the evaluation
map

e : Diff0(T) → T
2, f 7→ f(y)

This induces a map eD : π1(Diff0(T2)) → π1(T2). By Lemma B this is an isomorphism.
Now consider the restrictions of e to Ham(T2) and Symp0(T2) and write eH , eS for the
respective induced group homomorphisms.
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π1(Ham(M, Ω)) π1(Symp0(M, Ω))

π1(Diff0(M))

π1(T2)

j

eH eS

eD

Since eD, eS are isos and j is injective, it follows from eH = j ◦ eS by a theorem from Floer
that eH vanishes (see [FP98]). But eH is injective, which can only be zero if π1(Ham(T2))
is zero.

Theorem. Let F ∈ F , C > 0 be such that |F (x, t)| for all x ∈ L, t ∈ S1.

(a) if M is a closed orientable surface of genus g ≥ 1 and L is a non-contractible surface,

(b) If M = S2 and L ⊆ M is an equator, or

then ρ(1, ϕF ) ≥ C.

Proof. (a) This follows directly from the previous theorem and Theorem 7.1.A.

(b) Since the fundamental group is generated by a 1-turn rotation, the Hamiltonian
vanishes on L (see Example 6.3.C). By Corollary 6.3.A, every function from H
vanishes at some point (x0, t0) of L × S1. Thus

ρ(1, ϕF ) = inf
H∈H

|||F − H||| ≥ C

Corollary (7.2.D). The group of Hamiltonian diffeomorphisms of a closed surface has
inifinite diamter with respect to Hofer’s metric.

Proof. Let L be as in Theorem 7.2.C, and let B ⊂ M be an open disc disjoint from L. Take
a Hamiltonian F ∈ F which is identically to C outside B.
The theorem then implies ρ(1, ϕF ) ≥ C. By taking C arbitrarily large, we can put ϕF

arbirarily far away from 1.

Note that we can shrink the ball B and increase C such that ϕF converges pointwise to 1,
but diverges in Hofer’s metric.
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The length spectrum

Instead of hoping that π1(Ham(M, Ω)) is trivial, we wish to find another way of providing
an estimate for ρ(1, ϕF ) that works for a larger class of manifolds.

Definition (7.3.A). For γ ∈ π1(Ham(M, Ω)), define its norm by

ν(γ) = inf length{ht}

where the infimum goes over all Hamiltonian loops which represent γ. We define the length

spectrum of Ham(M, Ω) to be the set
{

ν(γ)
∣

∣γ ∈ π1(Ham(M, Ω))
}

Remark. π1(Ham(M, Ω)) is commutative. Indeed, if we write ◦ for the composition of
paths ◦ modulo homotopy and ∗ for the point-wise multiplication in Ham(M, Ω), then they
satisfy

(a ∗ b) ◦ (c ∗ d) = (a ◦ c) ∗ (b ◦ d)

From this, it follows ◦ and ∗ coincide and are commutative. Thus write + for addition in
π1(Ham(M, Ω)) and 0 for the neutral element.
It also holds

ν(γ) = ν(−γ) and ν(γ + γ′) ≤ ν(γ) + ν(γ′)

The first equation follows from the fact that the inverse loop is generated by the reverse
path. The second equation holds because the path generated by point-wise multiplication
of representing loops of γ, γ′ in Ham(M, ω) is generated by the sum of their Hamiltonians.

It is not known whether ν is non-degenerate or not, so ν is a priori really a pseudo-norm.
The next definition lets us find another nice class of manifolds for which we can get a bound
for the metric.

Definition. We say that an open symplectic manifold (M, Ω) has the Liouville property,
if there exists a smooth family of diffeomorphisms

Dc : M → M, c ∈ (0, ∞)

such that D1 = 1 and D∗
c Ω = cΩ.

For example, the cotangent bundle π : T ∗N → N with diffeomorphisms Dc given fiberwise
by (p, q) 7→ (cp, q) has the Liouville property.

Lemma. If (M, Ω) has the Liouville property, then its length spectrum is {0}.

Proof. Let {ht} be a loop of Hamiltonian diffeomorphisms and {Dc} as above. Then for
every c > 0, the flow {DchtD

−1
c } is generated by the Hamiltonian cF (D−1

c x, t). Thus the
length goes to zero as c → 0, meaning that {ht} is homotopic rel endpoints to a loop of
arbitrarily small length.
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Refining the estimate

Theorem (7.4.A). Let (M, Ω) be a symplectic manifold and let L ⊆ M be a closed
Lagrangian submanifold with the stable Lagrangian intersection property.
Assume that the length spectrum of Ham(M, Ω) is bounded from above by some K ≥ 0. Let
F ∈ F be such that |F (x, t)| ≥ C for all x ∈ L and t ∈ S1.
Then

ρ(1, ϕF ) ≥ C − K

Proof. Let ϵ > 0 and let {gt} be a path in Ham(M, Ω) from 1 to ϕF . Consider the loop
{ftg

−1
t } and let γ be its homotopy class. By definition of ν, there is a loop {ht} which is

homotopic to {ftg
−1
t } which by assumption has length

length{ht} ≤ ν(γ) + ϵ ≤ K + ϵ

By Proposition 7.1.A, we have l(F ) ≥ C and since {htgt} is homotopic to {ft}, we have

C ≤ l(F )

= inf
paths {st} homotopic to {ft}

length{st}

≤ length{htgt}

≤ length{ht} + length{gt}

≤ K − ϵ + length{gt}

letting ϵ → 0, we get length{gt} ≥ C − K. As {gt} was an arbitrary path joining 1 to ϕF

we obtain ρ(1, ϕF ) ≥ C − K.

References

[FP98] Dusa McDuff François Lalonde and Leonid Polterovich. “On the Flux Conjectures”.
In: “Geometry, Topology and Dynamics, ed F. Lalonde, Proceedings of the CRM
1995 Workshop in Montreal, the CRM Special Series of the AMS”. Vol 15 (1998).

[MS98] Dusa McDuff and Dietmar Salamon. Introduction to Symplectic Topology. Claren-
don Press Oxford, 1998. isbn: 0-19-850451-9.

[Pol01] Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphisms.
Springer Basel AG, 2001. isbn: 978-3-7643-6432-8.

[EE43] Clifford J. Earle and James Eells. “A fibre bundle description of Teichmüller
theorey”. In: Journal of differential geometry 3 (1969 19-43).

7


	Goal
	Notation and Results
	Starting Estimate
	The fundamental group
	The length spectrum
	Refining the estimate

